Quantitative Imaging for Assessing Breast Cancer Response to Treatment

用于评估乳腺癌治疗反应的定量成像

基本信息

项目摘要

Summary/Abstract The goal of this project is to implement effective, imaging-based strategies combining DCE-MRI and DWI to assess response for breast cancer patients receiving pre-operative (neoadjuvant) chemotherapy. This project builds on the prior NCI Quantitative Imaging Network (QIN) U01 grant award CA151235 entitled “Quantitative Imaging for Assessing Breast Cancer Response to Treatment” and addresses the needs for improved accuracy, standardization and consistency of breast MRI to perform quantitative assessment of treatment response across multiple clinical centers. The new QIN project will continue to advance quantitative MRI methods in the context of the I-SPY 2 TRIAL, an adaptive Phase II trial of targeted agents for breast cancer. We will use diagnostic models applied to the expanding I-SPY 2 cohorts to maximize the biomarker performance of imaging measurements and to construct decision tools to enable rational strategies for treatment modification. In prior work we developed and implemented image quality control and assessment processes for breast diffusion-weighted MRI (DWI) that were utilized in the American College of Radiology Imaging Network (ACRIN) trial 6698, an imaging sub-study of I-SPY 2 testing DWI for prediction of response. Initial results showed excellent repeatability of apparent diffusion coefficient (ADC) measurements using a standardized 4 b-value protocol, and change in ADC with treatment was found to be predictive of pathologic complete response (pCR). In parallel efforts, we worked with QIN collaborators at University of Michigan and industrial partners to develop gradient non-linearity correction and B0 inhomogeneity correction methods for ADC quantification. We also collaborated with the National Institute of Standards and Technology (NIST) to develop a universal breast MRI phantom for standardization of breast MRI in clinical trials. The new U01 project will evaluate these methods on the multiple vendor platforms in I-SPY 2 with particular focus on maximizing the combined performance of breast DCE-MRI and DWI. Under Specific Aim 1, we propose to gain performance improvements by implementing more advanced DWI pulse sequence techniques (multi b-value DWI and high spatial resolution DWI) and correcting known systematic errors (gradient non-linearity and B0 inhomogeneity). We will additionally implement a phantom-based quality assurance process to evaluate pulse sequence performance at all sites, with the goal of identifying and correcting platform bias and variability in ADC measurement and establishing quality benchmarks for data acceptance. Specific Aim 2 will focus on improving ADC quantitation by incorporating co-registration of DWI to dynamic contrast-enhanced (DCE) images, as well as automated segmentation techniques to measure heterogeneity in tumor ADC. We anticipate that these collective improvements in image acquisition, standardization, use of quality benchmarks and pixel- based metrics will lead to overall improvements in ADC measurement. The improved metrics will be tested in predictive models for pathologic response and survival in I-SPY 2.
摘要/摘要 该项目的目标是实施有效的、基于成像的策略,结合 DCE-MRI 和 DWI 评估接受术前(新辅助)化疗的乳腺癌患者的反应。这个项目 建立在之前的 NCI 定量成像网络 (QIN) U01 资助奖 CA151235 的基础上,题为“定量 用于评估乳腺癌治疗反应的成像”并满足改进的需求 乳房 MRI 的准确性、标准化和一致性,用于对治疗进行定量评估 多个临床中心的反应。新的QIN项目将继续推进定量MRI I-SPY 2 TRIAL 是一项针对乳腺癌靶向药物的适应性 II 期试验。 我们将使用应用于扩展 I-SPY 2 队列的诊断模型,以最大限度地提高生物标志物 成像测量的性能并构建决策工具以实现合理的策略 治疗修改。在之前的工作中,我们开发并实施了图像质量控制和评估 美国放射学院使用的乳腺弥散加权 MRI (DWI) 流程 成像网络 (ACRIN) 试验 6698,I-SPY 2 的成像子研究,测试 DWI 以预测反应。 初步结果表明,表观扩散系数 (ADC) 测量具有出色的重复性 标准化 4 b 值方案,并且发现治疗后 ADC 的变化可预测病理变化 complete response (pCR).与此同时,我们与密歇根大学的 QIN 合作者进行了合作, 工业合作伙伴开发梯度非线性校正和B0不均匀性校正方法 ADC 量化。我们还与美国国家标准与技术研究院 (NIST) 合作 开发通用乳腺 MRI 模体,以实现临床试验中乳腺 MRI 的标准化。新款U01 项目将在 I-SPY 2 的多个供应商平台上评估这些方法,特别关注 最大限度地提高乳腺 DCE-MRI 和 DWI 的综合性能。在具体目标 1 下,我们建议 通过实施更先进的 DWI 脉冲序列技术(多 b值DWI和高空间分辨率DWI)并校正已知的系统误差(梯度非线性 和 B0 不均匀性)。我们还将实施基于模型的质量保证流程来评估 所有站点的脉冲序列性能,目的是识别和纠正平台偏差和变异性 ADC 测量和建立数据接受的质量基准。具体目标 2 将重点关注 通过将 DWI 联合配准与动态对比增强 (DCE) 相结合来改进 ADC 定量 图像,以及测量肿瘤 ADC 异质性的自动分割技术。我们预计 这些在图像采集、标准化、质量基准和像素使用方面的集体改进 基于的指标将导致 ADC 测量的整体改进。改进后的指标将在 I-SPY 2 中病理反应和生存的预测模型。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nola M. Hylton-Watson其他文献

Nola M. Hylton-Watson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nola M. Hylton-Watson', 18)}}的其他基金

Dedicated breast PET and MRI for characterization of breast cancer and its response to therapy
专用乳腺 PET 和 MRI,用于表征乳腺癌及其对治疗的反应
  • 批准号:
    10092115
  • 财政年份:
    2019
  • 资助金额:
    $ 62.6万
  • 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
  • 批准号:
    9769672
  • 财政年份:
    2018
  • 资助金额:
    $ 62.6万
  • 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
  • 批准号:
    10241938
  • 财政年份:
    2018
  • 资助金额:
    $ 62.6万
  • 项目类别:
Project 2: Non-invasive imaging metrics to optimize early treatment switching decisions and prognostic modeling of long-term outcomes
项目 2:非侵入性成像指标,用于优化早期治疗转换决策和长期结果的预后建模
  • 批准号:
    10628610
  • 财政年份:
    2017
  • 资助金额:
    $ 62.6万
  • 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
  • 批准号:
    10013138
  • 财政年份:
    2017
  • 资助金额:
    $ 62.6万
  • 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
  • 批准号:
    10249155
  • 财政年份:
    2017
  • 资助金额:
    $ 62.6万
  • 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
  • 批准号:
    8338834
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
ACRIN 6657: CONTRAST-ENHANCED BREAST CANCER MRI FOR EVALUATION OF PATIENTS
ACRIN 6657:用于评估患者的增强型乳腺癌 MRI
  • 批准号:
    8362860
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
  • 批准号:
    8537122
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
  • 批准号:
    8108104
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了