Project 2: Non-invasive imaging metrics to optimize early treatment switching decisions and prognostic modeling of long-term outcomes
项目 2:非侵入性成像指标,用于优化早期治疗转换决策和长期结果的预后建模
基本信息
- 批准号:10628610
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-08 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBedsBiological MarkersBiopsyBreastBreast Cancer TreatmentBreast Magnetic Resonance ImagingCancer BurdenClassificationClinicalClinical Drug DevelopmentCore BiopsyDataDecision ModelingDedicationsDiseaseDisease-Free SurvivalDrug EvaluationERBB2 geneEarly DiagnosisEarly treatmentElementsEligibility DeterminationEndocrineEstrogen receptor positiveEvaluationFundingGoalsHeterogeneityHistopathologyImageIn complete remissionIndividualKineticsLabelMagnetic Resonance ImagingMammary NeoplasmsMeasurementMeasuresMethodologyModelingMolecularNegative FindingNeoadjuvant TherapyNodalNormal tissue morphologyOperative Surgical ProceduresOutcomePathologicPathologyPatientsPerformancePharmaceutical PreparationsPhasePositron-Emission TomographyProbabilityPrognostic MarkerProtocols documentationRandomizedRecommendationRegimenResearch PersonnelResidual CancersRetrospective StudiesSequential TreatmentSerial Magnetic Resonance ImagingShapesSignal TransductionStandardizationTestingTimeTrainingTreatment ProtocolsTumor VolumeTumor-DerivedUpdateWidespread Diseasearmbiomarker developmentcohortcontrast enhanceddesigndrug developmentdrug efficacyeffectiveness evaluationimaging biomarkerimaging modalityimprovedindividual patientindividualized medicinemalignant breast neoplasmmolecular markermolecular subtypesnext generationnon-invasive imagingnovelparticipant enrollmentpatient subsetspersonalized medicinepredicting responsepredictive markerpredictive modelingprognosticprognostic modelprogramsquantitative imagingradiomicsradiotracerrelapse riskresponseresponse biomarkersuccesstargeted biomarkertooltreatment armtreatment effecttreatment responsetrial designtumortumor DNAtumor heterogeneityuptake
项目摘要
The overall objective of the Program Project is to optimize every patient’s likelihood of reaching a pathologic complete
response (pCR) by using imaging, histopathology and molecular biomarkers to guide their treatment. Project 2 focuses on
advancing the imaging methods in the evolved design of I-SPY2.2, to identify patients that might benefit from a change in
course of treatment. In the I-SPY2 trial design, MRI measurements of functional tumor volume (FTV) are the biomarker
used to inform the longitudinal model for evaluation of drug arms. In I-SPY2.2, FTV is used at the individual patient level
to tailor treatments, raising the need for greater control over variability in MRI performance. We have been addressing
many of the elements involved in standardization of MRIs performed in the clinical setting through NCI-funded efforts in
the area of quantitative imaging. We also performed retrospective studies using data from 990 patients randomized to one
of 9 experimental drug arms completed by 2016 to better understand the impact of variability on FTV’s performance as a
biomarker and those findings have been used to introduce refinements to the I-SPY2 MRI exam protocol. Specific Aims 1
and 2 focus on iterative improvements to the de-escalation strategy and pre-RCB, as well as the escalation strategy,
respectively. While FTV-based response provides the initial signal for considering a change in treatment, different
strategies are required to improve the level of certainty for recommending escalation or de-escalation, given MRI’s
relative strength in demonstrating extensive disease, and limitation in detecting minimal disease. In the pre-RCB de-
escalation strategy, a negative finding on core biopsy of the tumor bed at 12-weeks is required before the option to omit
AC is offered. In the scenario of escalation, we use MRI response of less than 30% at 3-weeks to flag potential poor
response and recommend repeat imaging at 6-weeks, where the threshold for escalation to Block B is <65% FTV
response. We will build on these initial strategies in several ways. Current MRI prediction models are based on data from
the initial 990 patients enrolled under I-SPY2 and have been optimized within subtypes defined by HR and HER2. We
will refine these models using the more biologically-relevant Response-Predictive Subtype schema and using expanded I-
SPY patient cohorts. More comprehensive MRI prediction models twill be developed, integrating classifiers of shape,
heterogeneity and normal tissue features that can be derived from the same MRI data used to measure FTV. Working with
Project 3 investigators, we will pose the question of added value of ctDNA in both the de-escalation and escalation
strategies, investigating the use of ctDNA at multiple timepoints. Specific Aim 3 addresses the potential additive benefit
of serial FTV measurement to the histopathologic endpoint residual cancer burden (RCB) which has been well-established
as prognostic in the neoadjuvant setting. Recognizing the unique setting of I-SPY 2 in which MRI is performed for all
patients, and that serial MRI is not feasible in all clinical settings, we will specifically investigate the differential benefit
by subtype and treatment arms to determine if there are sub-groups of patients for whom added prognostic information is
particularly informative and MRI can be recommended. Specific Aim 4 will explore the use of imaging markers derived
from 18F-fluoroestradiol (FES)dedicated breast PET for patients receiving endocrine treatment in an I-SPY2.2 substudy.
该项目的总体目标是优化每位患者达到病理完全的可能性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nola M. Hylton-Watson其他文献
Nola M. Hylton-Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nola M. Hylton-Watson', 18)}}的其他基金
Dedicated breast PET and MRI for characterization of breast cancer and its response to therapy
专用乳腺 PET 和 MRI,用于表征乳腺癌及其对治疗的反应
- 批准号:
10092115 - 财政年份:2019
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
9769672 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10241938 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10478050 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10013138 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10249155 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8338834 - 财政年份:2011
- 资助金额:
$ 37.6万 - 项目类别:
ACRIN 6657: CONTRAST-ENHANCED BREAST CANCER MRI FOR EVALUATION OF PATIENTS
ACRIN 6657:用于评估患者的增强型乳腺癌 MRI
- 批准号:
8362860 - 财政年份:2011
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8537122 - 财政年份:2011
- 资助金额:
$ 37.6万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8108104 - 财政年份:2011
- 资助金额:
$ 37.6万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 37.6万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 37.6万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant