Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
基本信息
- 批准号:9769672
- 负责人:
- 金额:$ 62.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdverse effectsAmerican College of Radiology Imaging NetworkAwardBenchmarkingBenignBreastBreast Cancer PatientBreast Cancer TreatmentBreast Magnetic Resonance ImagingCellularityClinicalClinical TrialsCollaborationsDataDiagnosisDiagnosticDiffusionDiffusion Magnetic Resonance ImagingEffectivenessError SourcesEvaluationFundingGoalsGrantImageImage EnhancementImaging PhantomsIn complete remissionIndustrializationInstitutesLesionMagnetic Resonance ImagingMalignant - descriptorMeasurementMeasuresMethodsMichiganModelingModificationNeoadjuvant TherapyNeurologicOperative Surgical ProceduresOutcomePathologicPatientsPerformancePerfusionPhysiologic pulsePrecision therapeuticsProcessProcess AssessmentProtocols documentationQuality ControlRecurrenceReproducibilityResearchResolutionRiskScanningSiteStandardizationSystemTechniquesTechnologyTestingTimeUniversitiesVendorWashingtonWorkbasebiomarker performancechemotherapyclinical implementationclinical practicecohortcontrast enhanceddata acquisitionimage registrationimaging biomarkerimaging modalityimprovedindividualized medicineindustry partnermalignant breast neoplasmpersonalized strategiesphase II trialpredicting responsepredictive modelingpreventprogramsquality assurancequantitative imagingresponsesurvival predictiontargeted agenttooltreatment responsetreatment strategytumortumor heterogeneity
项目摘要
Summary/Abstract
The goal of this project is to implement effective, imaging-based strategies combining DCE-MRI and DWI to
assess response for breast cancer patients receiving pre-operative (neoadjuvant) chemotherapy. This project
builds on the prior NCI Quantitative Imaging Network (QIN) U01 grant award CA151235 entitled “Quantitative
Imaging for Assessing Breast Cancer Response to Treatment” and addresses the needs for improved
accuracy, standardization and consistency of breast MRI to perform quantitative assessment of treatment
response across multiple clinical centers. The new QIN project will continue to advance quantitative MRI
methods in the context of the I-SPY 2 TRIAL, an adaptive Phase II trial of targeted agents for breast cancer.
We will use diagnostic models applied to the expanding I-SPY 2 cohorts to maximize the biomarker
performance of imaging measurements and to construct decision tools to enable rational strategies for
treatment modification. In prior work we developed and implemented image quality control and assessment
processes for breast diffusion-weighted MRI (DWI) that were utilized in the American College of Radiology
Imaging Network (ACRIN) trial 6698, an imaging sub-study of I-SPY 2 testing DWI for prediction of response.
Initial results showed excellent repeatability of apparent diffusion coefficient (ADC) measurements using a
standardized 4 b-value protocol, and change in ADC with treatment was found to be predictive of pathologic
complete response (pCR). In parallel efforts, we worked with QIN collaborators at University of Michigan and
industrial partners to develop gradient non-linearity correction and B0 inhomogeneity correction methods for
ADC quantification. We also collaborated with the National Institute of Standards and Technology (NIST) to
develop a universal breast MRI phantom for standardization of breast MRI in clinical trials. The new U01
project will evaluate these methods on the multiple vendor platforms in I-SPY 2 with particular focus on
maximizing the combined performance of breast DCE-MRI and DWI. Under Specific Aim 1, we propose to
gain performance improvements by implementing more advanced DWI pulse sequence techniques (multi
b-value DWI and high spatial resolution DWI) and correcting known systematic errors (gradient non-linearity
and B0 inhomogeneity). We will additionally implement a phantom-based quality assurance process to evaluate
pulse sequence performance at all sites, with the goal of identifying and correcting platform bias and variability
in ADC measurement and establishing quality benchmarks for data acceptance. Specific Aim 2 will focus on
improving ADC quantitation by incorporating co-registration of DWI to dynamic contrast-enhanced (DCE)
images, as well as automated segmentation techniques to measure heterogeneity in tumor ADC. We anticipate
that these collective improvements in image acquisition, standardization, use of quality benchmarks and pixel-
based metrics will lead to overall improvements in ADC measurement. The improved metrics will be tested in
predictive models for pathologic response and survival in I-SPY 2.
总结/摘要
本项目的目标是实施有效的、基于成像的策略,结合DCE-MRI和DWI,
评估接受术前(新辅助)化疗的乳腺癌患者的反应。这个项目
建立在先前的NCI定量成像网络(QIN)U 01资助奖CA 151235的基础上,
评估乳腺癌对治疗的反应的成像”,并解决了改善
乳腺MRI的准确性、标准化和一致性,以进行治疗的定量评估
多个临床中心的反应。新的QIN项目将继续推进定量MRI
方法在I-SPY 2试验的背景下,一个适应性的II期试验的靶向药物乳腺癌。
我们将使用应用于扩展I-SPY 2队列的诊断模型,以最大限度地提高生物标志物
成像测量的性能,并构建决策工具,以实现合理的策略,
治疗修改在先前的工作中,我们开发并实施了图像质量控制和评估
美国放射学会使用的乳腺扩散加权MRI(DWI)流程
成像网络(ACRIN)试验6698,一项I-SPY 2测试DWI预测缓解的成像子研究。
初步结果显示,使用表观扩散系数(ADC)测量的可重复性极佳,
标准化的4 b值方案,ADC值随治疗的变化被认为是病理性的预测。
完全缓解(pCR)。在平行的努力中,我们与密歇根大学的QIN合作者合作,
工业合作伙伴开发梯度非线性校正和B 0不均匀性校正方法,
ADC定量。我们还与美国国家标准与技术研究院(NIST)合作,
开发通用乳腺MRI体模,用于临床试验中乳腺MRI的标准化。新U 01
该项目将在I-SPY 2中的多个供应商平台上评估这些方法,特别关注
最大化乳腺DCE-MRI和DWI的组合性能。在具体目标1下,我们建议
通过实施更先进的DWI脉冲序列技术(多个
b值DWI和高空间分辨率DWI)和校正已知系统误差(梯度非线性
B 0不均匀性)。我们还将实施基于体模的质量保证流程,
所有站点的脉冲序列性能,目的是识别和纠正平台偏差和可变性
在ADC测量和建立数据验收的质量基准。具体目标2将侧重于
通过结合DWI与动态对比增强(DCE)的共配准来改善ADC定量
图像,以及自动分割技术来测量肿瘤ADC的异质性。我们预计
这些在图像采集、标准化、质量基准和像素使用方面的集体改进,
的指标将导致ADC测量的整体改进。改进后的指标将在
I-SPY 2中病理反应和存活的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nola M. Hylton-Watson其他文献
Nola M. Hylton-Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nola M. Hylton-Watson', 18)}}的其他基金
Dedicated breast PET and MRI for characterization of breast cancer and its response to therapy
专用乳腺 PET 和 MRI,用于表征乳腺癌及其对治疗的反应
- 批准号:
10092115 - 财政年份:2019
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10241938 - 财政年份:2018
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10478050 - 财政年份:2018
- 资助金额:
$ 62.73万 - 项目类别:
Project 2: Non-invasive imaging metrics to optimize early treatment switching decisions and prognostic modeling of long-term outcomes
项目 2:非侵入性成像指标,用于优化早期治疗转换决策和长期结果的预后建模
- 批准号:
10628610 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10013138 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10249155 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8338834 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
ACRIN 6657: CONTRAST-ENHANCED BREAST CANCER MRI FOR EVALUATION OF PATIENTS
ACRIN 6657:用于评估患者的增强型乳腺癌 MRI
- 批准号:
8362860 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8537122 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8108104 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 62.73万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Standard Grant














{{item.name}}会员




