Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
基本信息
- 批准号:10487570
- 负责人:
- 金额:$ 37.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectArchitectureAstrocytesBehaviorBioinformaticsBiologicalBiological AssayBiological ModelsBiologyBiomedical EngineeringBiomimeticsBlood capillariesCXCL12 geneCXCRCXCR4 geneCell CommunicationCell MaintenanceCellsCoculture TechniquesComplexDataDevelopmentDiseaseDisease ProgressionDoseEndothelial CellsExcisionExposure toFoundationsGeneticGenomicsGlioblastomaGliomaGoalsHomingHumanHypoxiaImmuneIn VitroIndividualInterruptionKnowledgeLigandsMediatingMethodsMicrofluidic MicrochipsMicrofluidicsMicrogliaModelingMolecularOncologyOperative Surgical ProceduresOrganoidsPathway interactionsPatientsPericytesPharmacologyPhysiologicalPositioning AttributePrediction of Response to TherapyPropertyRadiationRadiation therapyRecurrenceResearch DesignResistanceResolutionRoleSamplingShelter facilitySiteSliceSpecificityTimeTissue EngineeringTissuesTumor TissueTumorigenicityValidationbasecell behaviorcell typechemotherapeutic agentconventional therapyendothelial stem cellgenotoxicityin vivoin vivo Modelinsightinterdisciplinary approachirradiationmouse modelmultidisciplinaryneoplastic cellnovelradiation resistancereceptorresponseself-renewalsingle-cell RNA sequencingsmall hairpin RNAstemstem cell biologystem cell proliferationstem cellsstemnesstargeted treatmenttherapy resistantthree dimensional cell culturethree-dimensional modelingtranscriptome sequencingtranscriptomicstreatment responsetumortumor microenvironment
项目摘要
Summary
One of the critical challenges in the treatment of Glioblastoma (GBM) is the presence of highly resistant cells
with stem-like properties, called glioma stem cells (GSCs), that evade surgical resection, resist conventional
treatments and are primarily responsible for tumor recurrence. The perivascular niche within the GBM tumor
microenvironment (TME) has been well recognized as a critical site that shelters GSCs and promotes their
stemness, invasion, and therapeutic resistance.
Extensive studies from others and our lab, using in vitro and in vivo models, have demonstrated that the
crosstalk between the endothelial cells (ECs) and GSCs regulates GSC proliferation, tumorigenicity and self-
renewal capacity. However, the perivascular niche is a complex microenvironment comprised not only of ECs
but multiple other cell types including astrocytes, pericytes, and immune cells. How the cell-cell interactions
between the various cellular components of the perivascular niche modulate GSC behavior (proliferation vs.
quiescence and invasion vs. homing) and therapy resistance is poorly understood. To address these unmet
biological knowledge gaps, there is a critical need for sophisticated and more realistic ex vivo tumor models that
better recapitulate the physiological complexities of the GBM perivascular niche to advance our fundamental
understanding of the biology of the disease and predict therapeutic responses.
Recently, we have established and validated an on-chip microfluidic tumor model of GBM, with a unique 3D
organotypic architecture, to study the influence of the perivascular niche on GSC invasion. We have shown that
co-culturing of astrocytes enhances EC-induced invasion of GSCs, where RNA-seq analysis of mono-culture vs.
tri-culture provided a mechanistic insight into the receptor-ligand pairs that mediate the interactions between
cells. Based on these foundational developments, in this study our goal is to develop an ex vivo tumor model of
GBM, bioinspired from the native perivascular niche, with patient-derived cells to dissect the role of cellular
components within the niche on GSC biology and response to treatment at single cell resolution.
In Aim 1, our objective is to determine the influence of the key cell types within the perivascular niche on
GSC-EC interactions. In Aim 2, we plan to mechanistically unveil the impact of radiation treatment on GSCs-
perivascular niche interactions, while in Aim 3, we will blunt invasion and sensitize GSCs through disruption of
niche-tumor cell interactions. Our study design uniquely employs an interdisciplinary approach including
microengineering of a bioinspired ex vivo tumor model, single-cell level resolution analysis, molecular-level
transcriptomics, and validation using ex vivo patient tumor samples. Successful completion of these studies will
not only further our understanding of the interactions of GSCs with the perivascular niche but will also facilitate
identification of novel targets to block disease progression.
总结
胶质母细胞瘤(GBM)治疗的关键挑战之一是存在高度耐药细胞
具有干细胞样特性的胶质瘤干细胞(GSC),可以逃避手术切除,抵抗常规的
治疗,并主要负责肿瘤复发。GBM肿瘤内的血管周围小生境
微环境(TME)已被公认为是庇护GSC并促进其
干性、侵袭性和治疗抗性。
来自其他人和我们实验室的广泛研究,使用体外和体内模型,已经证明,
内皮细胞和GSC之间的相互作用调节GSC的增殖、致瘤性和自身免疫功能。
更新能力。然而,血管周围生态位是一个复杂的微环境,
还包括多种其它细胞类型,包括星形胶质细胞、周细胞和免疫细胞。细胞间的相互作用
血管周围小生境的各种细胞成分之间的相互作用调节GSC的行为(增殖对
静止和侵入对归巢)和治疗抗性的了解很少。为了解决这些未得到满足的
由于生物学知识的空白,迫切需要复杂和更现实的离体肿瘤模型,
更好地概括了GBM血管周围生态位的生理复杂性,以推进我们的基础研究。
了解疾病的生物学并预测治疗反应。
最近,我们建立并验证了GBM的芯片微流体肿瘤模型,具有独特的3D
器官型结构,研究血管周围生态位对GSC侵袭的影响。我们已经证明
星形胶质细胞的共培养增强了EC诱导的GSC侵袭,其中单培养物与
三重培养提供了一个机制的洞察受体配体对介导的相互作用,
细胞基于这些基础性的发展,在这项研究中,我们的目标是建立一个离体肿瘤模型,
GBM,从天然血管周围生态位生物启发,与患者来源的细胞解剖细胞的作用,
在GSC生物学上的生态位内的组分和对单细胞分辨率的处理的响应。
在目标1中,我们的目标是确定血管周围小生境内的关键细胞类型对
GSC-EC相互作用。在目标2中,我们计划从机制上揭示放射治疗对GSC的影响-
血管周围生态位相互作用,而在目标3中,我们将通过破坏
小生境-肿瘤细胞相互作用。我们的研究设计独特地采用了跨学科的方法,包括
生物启发的离体肿瘤模型的微工程,单细胞水平分辨率分析,分子水平
转录组学和使用离体患者肿瘤样品的验证。成功完成这些研究将
不仅加深了我们对GSC与血管周围生态位相互作用的理解,
鉴定新的靶点以阻断疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Nikkhah其他文献
Mehdi Nikkhah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10665738 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10279283 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
MICROFABRICATED 3D VASCULARIZED CARDIAC TISSUE CONSTRUCTS
微型 3D 血管化心脏组织结构
- 批准号:
8526165 - 财政年份:2013
- 资助金额:
$ 37.72万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.72万 - 项目类别:
Research Grant