MICROFABRICATED 3D VASCULARIZED CARDIAC TISSUE CONSTRUCTS
微型 3D 血管化心脏组织结构
基本信息
- 批准号:8526165
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdhesivenessAdhesivesAffectArchitectureBiocompatible MaterialsBiologic CharacteristicBiologicalBiomechanicsBiomedical EngineeringBiomimeticsBlood VesselsCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCause of DeathCell CommunicationCellsCoculture TechniquesComplexDevelopmentEncapsulatedEndothelial CellsEngineeringFunctional disorderGelatinHeartHydrogelsLeadMechanical StimulationMechanicsMesenchymal Stem CellsMethacrylatesMicrofabricationNatural regenerationNude MiceOrgan TransplantationPatternPharmaceutical PreparationsPlayPropertyResearchResearch PersonnelRoleSmooth Muscle MyocytesStem cellsStretchingStructureTechniquesTechnologyTestingTissue EngineeringTissuesTrainingVascularizationWorkbasecytotoxicitydesignexperienceimprovedin vivoinjuredinnovationmouse modelnanofabricationpublic health relevancerepairedscaffoldstem cell differentiationtissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Cardiovascular diseases caused by the loss or dysfunction of cardiomyocytes (CMs) are the leading cause of death and affect millions of people worldwide. Tissue engineering holds great promise for the repair of injured hearts but requires the engineering of functional tissue constructs. Some of the key limitations of current cardiovascular tissue engineering approaches include the inability to generate cell-laden and cell- adhesive biomaterials, engineer vascularized tissues, and mimic the biological complexity and microarchitecture of cardiac tissues. To address these challenges, we aim to combine innovative microscale technology and advanced biomaterials (i.e. hydrogels) to create cell-laden hydrogels and develop 3D vascularized cardiac tissue constructs with controlled physical and biological properties. We will primarily use natural-based photocrosslinkable hydrogels (gelatin methacrylate, GelMA) to develop highly organized 3D vascularized networks. Specifically, we will co-culture endothelial cells (ECs) and mesenchymal stem cells (MSCs) within the patterned hydrogel construct and induce MSCs differentiation toward smooth muscle cells and develop biomimetic vasculature with controlled geometrical features and biological characteristics. Then, we will encapsulate cardiomyocytes within another layer of hydrogel and combine it with the pre- developed vascularized networks to generate cardiac tissue constructs with variable configurations and controlled complexities. Through the triple-culture of CMs with aligned ECs and MSCs, we will extensively study the biological properties of the tissue construct. In addition,
we will test the functionality of the developed vascularized construct under cyclically stretched conditions. Finally, we will assess the functional properties of the engineered cardiac tissue construct in vivo. Achievements in this project will be important for cardiovascular tissue regeneration where the matrix material properties and configuration play an important role in maintaining native structural architecture of cardiac and vascular tissues. In addition, the developed constructs can be used as an integrative platform for drug cytotoxicity studies.
描述(由申请人提供):由心肌细胞(CMS)丢失或功能障碍引起的心血管疾病是导致死亡的主要原因,影响全球数百万人。组织工程学在修复受损心脏方面大有可为,但需要功能性组织结构的工程化。目前心血管组织工程方法的一些关键局限性包括无法产生细胞负载和细胞黏附的生物材料,无法设计血管组织,无法模拟心脏组织的生物复杂性和微结构。为了应对这些挑战,我们的目标是将创新的微尺度技术与先进的生物材料(即水凝胶)相结合,创建细胞载水凝胶,并开发具有可控物理和生物特性的3D血管心脏组织结构。我们将主要使用天然基光交联性水凝胶(明胶甲基丙烯酸酯,GelMA)来开发高度有序的3D血管网络。具体地说,我们将在图案化水凝胶中共培养内皮细胞(ECs)和间充质干细胞(MSCs),构建和诱导MSCs向平滑肌细胞分化,并开发具有可控几何特征和生物学特性的仿生血管。然后,我们将心肌细胞包裹在另一层水凝胶中,并将其与预先开发的血管网络结合起来,生成具有不同构型和可控复杂性的心肌组织结构。通过CMS与排列的ECs和MSCs的三重培养,我们将广泛地研究组织结构的生物学特性。此外,
我们将测试开发的血管化结构在循环拉伸条件下的功能。最后,我们将评估体内构建的工程化心脏组织的功能特性。该项目的成果将对心血管组织再生具有重要意义,其中基质材料的性质和形态在维持心脏和血管组织的天然结构结构方面发挥着重要作用。此外,所开发的构建物可作为药物细胞毒性研究的综合平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Nikkhah其他文献
Mehdi Nikkhah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10487570 - 财政年份:2021
- 资助金额:
$ 3.3万 - 项目类别:
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10665738 - 财政年份:2021
- 资助金额:
$ 3.3万 - 项目类别:
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10279283 - 财政年份:2021
- 资助金额:
$ 3.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant