Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
基本信息
- 批准号:10489828
- 负责人:
- 金额:$ 63.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AreaArrhythmiaAtrial FibrillationBusinessesCalibrationCancer PatientCarbon ionCardiacClinicalClinical TrialsCollaborationsCommunity Clinical Oncology ProgramCyclotronsDevelopmentDoseDose-RateElectron BeamElectronsEnsureEuropeFeedbackFundingHumanImaging technologyInternationalIonizing radiationIonsLaboratoriesLegal patentLettersLicensingMethodsMichiganModalityMonitorMotionNormal tissue morphologyNuclear PhysicsParticle AcceleratorsPatientsPerformancePhasePhotonsPhysicsPositioning AttributeProblem SolvingProtonsRadiationRadiation Dose UnitRadiation OncologyRadiation therapyResolutionRoentgen RaysSafetyScanningSocietiesSpeedSynchrotronsSystemTechniquesTechnologyTestingThinnessTimeTissuesToxic effectTranslationsTumor TissueUniversitiesUpdatebasecancer therapycarbon ion therapyclinical implementationclinical translationcostdesigndetectordosimetryfractionated radiationimprovedinterestionizationmedical schoolsmeetingsmillisecondnovelparticle beampatient safetypreventprogramsproton beamproton therapyprototyperesponseside effectsignal processingtreatment durationtumor
项目摘要
Summary/Abstract
FLASH radiotherapy (FLASH-RT) is a novel form of radiation therapy that promises large sparing of normal-
tissues in cancer treatment while showing no tumor sparing. In FLASH-RT, the radiation dose is delivered to the
tumor and normal tissues in milliseconds rather than minutes. FLASH-RT is only effective when given with large
doses per fraction delivered in 1-3 treatment sessions. It would shorten a standard 30-day treatment to 1- 3 days,
thus greatly reducing side-effects and radiation therapy costs to both the patient and society. The first human
patient was successfully treated in 2018. The first clinical trial with ten (10) patients started in the U.S. in
November 2020. Additional clinical trials are planned for 2021 in the U.S. and in Europe with at least 100 patients.
A major limitation of FLASH-RT, preventing a fast translation to clinical use, is the lack of detectors capable of
meeting the requirements needed to monitor and terminate the FLASH-RT treatment in real time. We propose
to develop and demonstrate a large area, ultrafast and precise external beam monitor for FLASH-RT, universally
suitable for electrons, protons, photons, and ions, that can terminate the beam in ≤1 ms while the patient is being
treated. For this proposal, we will primarily focus on developing and demonstrating the system for electron
FLASH-RT with linacs and proton FLASH-RT with existing cyclotrons, but will also demonstrate performance
using X-rays. Unlike strip or wire ionization chambers, the proposed system is based on our patented (Jan 2020
and Nov 2020) ionizing-radiation beam monitoring system technology, which can provide ultrafast readout with
concurrent analysis of the radiation beam position, profile, and fluence/dosimetry in real time at a rate of ≥10
kHz (i.e., beam analysis ≤100 µs). The proposed system provides real-time dosimetry, beam control, and
verification for FLASH-RT. It provides an accurate 2D position and beam profile of rapidly scanned beams with
a spatial resolution of a few microns over an active beam monitoring area of 26 cm x 30 cm. The beam monitor
response is linear, without saturation, for all FLASH-RT beam luminosities. Proton beam testing will be primarily
at the University of Michigan Ion Beam Laboratory, and electron beam testing at the Notre Dame Radiation
Laboratory. The proposed program is for 3-years and will evolve from fabrication and testing of a quarter-scale
beam monitor in Year 1 to a full-size system with self-calibration capability in Year 3. Our principal collaborators
on this program include the University of Michigan, Physics Department, and Loma Linda University, School of
Medicine. The proposed beam monitor constitutes a critical enabling technology for all types of FLASH-RT. It
will ensure the safety, quality, and efficiency of FLASH radiation therapy, allowing cancer patients to be
successfully treated with much higher doses, fewer side-effects, and excellent tumor control. It is also suitable
for spatially fractionated radiation therapy techniques such as GRID, LATTICE, microbeam RT (MRT), and
proton-minibeam RT (pMBRT). The proposed beam monitor is also being designed into a novel (patent pending)
ultrafast radioablation system that eliminates the motion problem for treating cardiac arrhythmia (AFib).
OMB No. 0925-0001/0002 (Rev. 01/18 Approved Through 03/31/2020) Page Continuation Format Page
总结/摘要
FLASH放射治疗(FLASH-RT)是一种新型的放射治疗形式,它保证了大量的正常-
组织中的癌症治疗,同时显示没有肿瘤保留。在FLASH-RT中,辐射剂量被输送到
肿瘤组织和正常组织之间的时间间隔为毫秒而不是分钟。FLASH-RT仅在给予大
在1-3次治疗中递送的每部分剂量。它将把标准的30天治疗缩短到1- 3天,
从而大大降低了对患者和社会的副作用和放射治疗成本。第一个人类
患者于2018年获得成功治疗。第一个临床试验有十(10)名患者开始在美国,
2020年11月计划于2021年在美国和欧洲进行额外的临床试验,至少有100名患者。
FLASH-RT的一个主要限制是缺乏能够快速转换为临床应用的检测器,
满足真实的实时监测和终止FLASH-RT治疗所需的要求。我们提出
开发和演示用于FLASH-RT的大面积、超快和精确的外部束流监测器,
适用于电子、质子、光子和离子,可在患者接受治疗时在≤1 ms内终止射束
治疗。对于这个建议,我们将主要集中在开发和演示系统的电子
使用直线加速器的FLASH-RT和使用现有回旋加速器的质子FLASH-RT,但也将展示性能
使用X光。与条状或线状电离室不同,拟议的系统基于我们的专利(2020年1月
和2020年11月)电离辐射束监测系统技术,该技术可以提供超快读出,
在真实的时间内以≥10的速率对辐射束位置、轮廓和通量/剂量测定进行同步分析
kHz(即,光束分析≤100 µs)。所提出的系统提供实时剂量测定、射束控制和
验证FLASH-RT。它提供了一个准确的2D位置和快速扫描光束的光束轮廓,
在26 cm x 30 cm的有效射束监测区域上具有几微米的空间分辨率。光束监视器
响应是线性的,没有饱和,所有的FLASH-RT光束光度。质子束测试将主要
在密歇根大学离子束实验室,和电子束测试在圣母院辐射
实验室拟议的计划是3年,将从制造和测试的四分之一规模
从第1年的光束监测器到第3年的具有自校准能力的全尺寸系统。我们的主要合作伙伴
参加这个项目的有密歇根大学物理系和洛马琳达大学物理学院。
药拟议的束流监测器构成了所有类型FLASH-RT的关键使能技术。
将确保FLASH放射治疗的安全性、质量和效率,让癌症患者
成功地治疗了高得多的剂量,副作用少,肿瘤控制出色。它也适用
用于空间分割放射治疗技术,例如GRID、LATTICE、微束RT(MRT),以及
质子微束RT(pMBRT)。拟议的光束监测器也正在设计成一种新颖的(专利申请中)
超快射频消融系统,消除了治疗心律失常(AFib)的运动问题。
OMB编号0925-0001/0002(2018年1月批准至2020年3月31日修订版)页码续页格式页码
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter S Friedman其他文献
Peter S Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter S Friedman', 18)}}的其他基金
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10667648 - 财政年份:2021
- 资助金额:
$ 63.72万 - 项目类别:
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10324507 - 财政年份:2021
- 资助金额:
$ 63.72万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
8648242 - 财政年份:2014
- 资助金额:
$ 63.72万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
9512766 - 财政年份:2014
- 资助金额:
$ 63.72万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
9137921 - 财政年份:2014
- 资助金额:
$ 63.72万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
WBP Fellowship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:














{{item.name}}会员




