Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
基本信息
- 批准号:10667648
- 负责人:
- 金额:$ 68.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AreaArrhythmiaAtrial FibrillationBusinessesCalibrationCancer PatientCarbon ionCardiacClinicalClinical TrialsCollaborationsCommunity Clinical Oncology ProgramCyclotronsDevelopmentDoseDose RateElectron BeamElectronsEnsureEuropeFeedbackFundingHumanImaging technologyInternationalIonizing radiationIonsLaboratoriesLegal patentLettersLicensingMethodsMichiganModalityMonitorMotionNormal tissue morphologyNuclear PhysicsParticle AcceleratorsPatientsPerformancePhasePhotonsPhysicsPositioning AttributeProtonsRadiationRadiation Dose UnitRadiation OncologyRadiation therapyResolutionRoentgen RaysSafetyScanningSocietiesSpecific qualifier valueSpeedSynchrotronsSystemSystems IntegrationTechniquesTechnologyTestingTherapy Clinical TrialsThinnessTimeTissuesToxic effectTranslationsTumor TissueUniversitiesUpdatecancer therapycarbon ion therapyclinical implementationclinical translationcommercializationcostdesigndetectordosimetryfabricationfractionated radiationimprovedinterestionizationmedical schoolsmeetingsmetermillisecondnovelparticle beampatient safetypreventprogramsproton beamproton therapyprototyperesponseside effectsignal processingtechnology platformtreatment durationtrial planningtumor
项目摘要
Summary/Abstract
FLASH radiotherapy (FLASH-RT) is a novel form of radiation therapy that promises large sparing of normal-
tissues in cancer treatment while showing no tumor sparing. In FLASH-RT, the radiation dose is delivered to the
tumor and normal tissues in milliseconds rather than minutes. FLASH-RT is only effective when given with large
doses per fraction delivered in 1-3 treatment sessions. It would shorten a standard 30-day treatment to 1- 3 days,
thus greatly reducing side-effects and radiation therapy costs to both the patient and society. The first human
patient was successfully treated in 2018. The first clinical trial with ten (10) patients started in the U.S. in
November 2020. Additional clinical trials are planned for 2021 in the U.S. and in Europe with at least 100 patients.
A major limitation of FLASH-RT, preventing a fast translation to clinical use, is the lack of detectors capable of
meeting the requirements needed to monitor and terminate the FLASH-RT treatment in real time. We propose
to develop and demonstrate a large area, ultrafast and precise external beam monitor for FLASH-RT, universally
suitable for electrons, protons, photons, and ions, that can terminate the beam in ≤1 ms while the patient is being
treated. For this proposal, we will primarily focus on developing and demonstrating the system for electron
FLASH-RT with linacs and proton FLASH-RT with existing cyclotrons, but will also demonstrate performance
using X-rays. Unlike strip or wire ionization chambers, the proposed system is based on our patented (Jan 2020
and Nov 2020) ionizing-radiation beam monitoring system technology, which can provide ultrafast readout with
concurrent analysis of the radiation beam position, profile, and fluence/dosimetry in real time at a rate of ≥10
kHz (i.e., beam analysis ≤100 µs). The proposed system provides real-time dosimetry, beam control, and
verification for FLASH-RT. It provides an accurate 2D position and beam profile of rapidly scanned beams with
a spatial resolution of a few microns over an active beam monitoring area of 26 cm x 30 cm. The beam monitor
response is linear, without saturation, for all FLASH-RT beam luminosities. Proton beam testing will be primarily
at the University of Michigan Ion Beam Laboratory, and electron beam testing at the Notre Dame Radiation
Laboratory. The proposed program is for 3-years and will evolve from fabrication and testing of a quarter-scale
beam monitor in Year 1 to a full-size system with self-calibration capability in Year 3. Our principal collaborators
on this program include the University of Michigan, Physics Department, and Loma Linda University, School of
Medicine. The proposed beam monitor constitutes a critical enabling technology for all types of FLASH-RT. It
will ensure the safety, quality, and efficiency of FLASH radiation therapy, allowing cancer patients to be
successfully treated with much higher doses, fewer side-effects, and excellent tumor control. It is also suitable
for spatially fractionated radiation therapy techniques such as GRID, LATTICE, microbeam RT (MRT), and
proton-minibeam RT (pMBRT). The proposed beam monitor is also being designed into a novel (patent pending)
ultrafast radioablation system that eliminates the motion problem for treating cardiac arrhythmia (AFib).
OMB No. 0925-0001/0002 (Rev. 01/18 Approved Through 03/31/2020) Page Continuation Format Page
摘要/摘要
闪光放射治疗 (FLASH-RT) 是一种新型放射治疗形式,有望大量保留正常组织。
癌症治疗中的组织,同时显示没有肿瘤保留。在 FLASH-RT 中,辐射剂量被传递到
肿瘤和正常组织只需几毫秒而不是几分钟。 FLASH-RT 仅在给予大剂量时才有效
1-3 个治疗疗程中每个部分的剂量。它将把标准的 30 天治疗时间缩短到 1-3 天,
从而大大减少患者和社会的副作用和放射治疗成本。第一个人类
患者于 2018 年获得成功治疗。首个涉及十 (10) 名患者的临床试验于 2018 年在美国启动
2020 年 11 月。计划于 2021 年在美国和欧洲进行至少 100 名患者的额外临床试验。
FLASH-RT 的一个主要限制是缺乏能够快速转化为临床应用的检测器
满足实时监测和终止 FLASH-RT 治疗所需的要求。我们建议
开发并演示用于 FLASH-RT 的大面积、超快且精确的通用外部光束监视器
适用于电子、质子、光子和离子,可在患者接受治疗时在 ≤1 毫秒内终止射束
治疗。对于这个提案,我们将主要关注电子系统的开发和演示
带有直线加速器的 FLASH-RT 和带有现有回旋加速器的质子 FLASH-RT,但也将展示性能
使用 X 射线。与带状或线状电离室不同,所提议的系统基于我们的专利(2020 年 1 月
和 2020 年 11 月)电离辐射束监测系统技术,可提供超快读数
以 ≥10 的速率实时并行分析辐射束位置、轮廓和注量/剂量测定
kHz(即波束分析≤100 µs)。所提出的系统提供实时剂量测定、射束控制和
FLASH-RT 验证。它提供快速扫描光束的精确 2D 位置和光束轮廓
在 26 厘米 x 30 厘米的主动光束监测区域内,空间分辨率为几微米。光束监视器
对于所有 FLASH-RT 光束亮度,响应都是线性的,没有饱和。质子束测试将主要是
密歇根大学离子束实验室和圣母院辐射中心的电子束测试
实验室。拟议的计划为期 3 年,将从四分之一规模的制造和测试发展而来
从第一年的光束监视器到第三年具有自校准能力的全尺寸系统。我们的主要合作者
该项目的合作伙伴包括密歇根大学物理系和洛马琳达大学学院
药品。所提出的光束监视器构成了所有类型 FLASH-RT 的关键支持技术。它
将确保FLASH放射治疗的安全、质量和效率,让癌症患者
以更高的剂量、更少的副作用和出色的肿瘤控制成功治疗。也很适合
用于空间分割放射治疗技术,例如 GRID、LATTICE、微束 RT (MRT) 和
质子微束 RT (pMBRT)。拟议的光束监测器也被设计成一种新颖的(正在申请专利)
超快放射消融系统可消除治疗心律失常 (AFib) 时的运动问题。
OMB 编号 0925-0001/0002(修订版 01/18 批准至 03/31/2020) 页面延续格式页面
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Prototype Scintillator Real-Time Beam Monitor for Ultra-high Dose Rate Radiotherapy
- DOI:10.1002/mp.17018
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:D. Levin;P. Friedman;C. Ferretti;Nicholas Ristow;M. Tecchio;D. Litzenberg;V. Bashkirov;R. Schulte
- 通讯作者:D. Levin;P. Friedman;C. Ferretti;Nicholas Ristow;M. Tecchio;D. Litzenberg;V. Bashkirov;R. Schulte
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter S Friedman其他文献
Peter S Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter S Friedman', 18)}}的其他基金
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10489828 - 财政年份:2021
- 资助金额:
$ 68.85万 - 项目类别:
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10324507 - 财政年份:2021
- 资助金额:
$ 68.85万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
8648242 - 财政年份:2014
- 资助金额:
$ 68.85万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
9512766 - 财政年份:2014
- 资助金额:
$ 68.85万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
9137921 - 财政年份:2014
- 资助金额:
$ 68.85万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
WBP Fellowship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:














{{item.name}}会员




