Computer Aided Diagnostic System for Prostate Cancer Detection Using Quantitative Multiparametric MRI
使用定量多参数 MRI 检测前列腺癌的计算机辅助诊断系统
基本信息
- 批准号:10493089
- 负责人:
- 金额:$ 56.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAnatomyBiological MarkersBiopsyBlood TestsCancer DetectionCancer EtiologyCessation of lifeClinicClinicalClinical TrialsCollaborationsComputer softwareDataData SetDetectionDevelopmentDevicesDiagnosisDiagnostic ProcedureDigital Rectal ExaminationDiseaseDisease ManagementEnsureEnvironmentEvaluationFutureGoalsHealthcare SystemsHistopathologyImage AnalysisImaging PhantomsImpotenceIncontinenceInvestigationLesionLifeLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateManufacturer NameMapsMeasuresMethodsModelingOutcomePatientsPerformancePhysiciansPositioning AttributePrevalenceProceduresProcessProstateProstate-Specific AntigenProtocols documentationQuality of lifeQuantitative EvaluationsRadiology SpecialtyReportingReproducibilitySamplingScreening for Prostate CancerSensitivity and SpecificitySiteSystemTechnologyTrainingTranslatingTranslationsTransrectal UltrasoundValidationVendoranalysis pipelinebaseblindclinical applicationclinical centerclinical translationcomputer aided detectioncomputer-assisted diagnosticscostdesigndetection platformdiagnostic platformdiagnostic toolexperienceimage guidedimaging modalityimaging systemimprovedindustry partnerinterestmalemennew technologynon-invasive monitornovelpredictive modelingprostate lesionsquantitative imagingradiologistrisk stratificationserum PSAtargeted imagingtooltumor specificityvalidation studies
项目摘要
Despite the prevalence of prostate cancer, the current tools available to manage the disease continues to
leave physicians and their patients in a position to overdiagnose and overtreat. The confidence to pursue more
conservative approaches like active surveillance are limited, as biopsy is known to underestimate the grade
and extent of disease, both of which are important for risk stratification. Targeted biopsies, by means of MRI-
guidance, are becoming the preferred way to ensure the most aggressive appearing lesions are sampled in the
hopes of avoiding some of the issues with standard biopsy approaches. These targeted biopsies make use of
multi-parametric MRI (mpMRI) which includes both anatomical and functional information that are
complimentary and together increase the sensitivity and specificity for cancer detection. However, the ability to
effectively use mpMRI requires specialized training while the standards for properly using the multiple MRI
datasets are still being developed. To address this issue, we have developed an alternative method that would
provide a quantitative, user-independent, summary of the mpMRI data (qMRI) to visually “map” disease and
assess its aggressiveness. Using quantitative MRI, a Composite Biomarker Score (CBS) map is generated,
with a demonstrated increase in sensitivity and specificity for tumor detection compared to any single qMRI
parameter. Our primary goal is to integrate this predictive qMRI model into a computer-aided diagnostic (CAD)
system (referred to as CBS-CAD) to improve the use of mpMRI in PCa management. Employing quantitative
MRI (qMRI) can address the issues of a qualitative image analysis if the major roadblocks to its adoption can
be overcome. To address the roadblocks and implement the CBS-CAD system we will pursue the following
specific aims: 1) develop an analysis pipeline to evaluate qMRI performance and translate CBS-CAD methods,
2) perform a multi-vendor, multi-site quantitative imaging technical performance evaluation and 3) perform a
multi-center clinical validation study assessing CBS-CAD performance. Our expected outcome of this
academic-industry partnership will be the integration of several novel technologies into a comprehensive CAD
system consisting of a phantom and automated software for 1) qMRI system validation and 2) clinical
translation of novel models for detecting cancer and assessing aggressiveness.
尽管前列腺癌的流行,目前可用的工具来控制疾病继续
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory John Metzger其他文献
Gregory John Metzger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory John Metzger', 18)}}的其他基金
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10391523 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10533352 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
Computer Aided Diagnostic System for Prostate Cancer Detection Using Quantitative Multiparametric MRI
使用定量多参数 MRI 检测前列腺癌的计算机辅助诊断系统
- 批准号:
10705180 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10210905 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
Technology to Realize the Full Potential of UHF MRI (Supplement)
充分发挥 UHF MRI 潜力的技术(补充)
- 批准号:
10285102 - 财政年份:2019
- 资助金额:
$ 56.93万 - 项目类别:
Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
- 批准号:
10549850 - 财政年份:2019
- 资助金额:
$ 56.93万 - 项目类别:
Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
- 批准号:
10376730 - 财政年份:2019
- 资助金额:
$ 56.93万 - 项目类别:
TRD2 - Ultrahigh Field Molecular Imaging and Spectroscopy
TRD2 - 超高场分子成像和光谱
- 批准号:
10549854 - 财政年份:2019
- 资助金额:
$ 56.93万 - 项目类别:
TRD2 - Ultrahigh Field Molecular Imaging and Spectroscopy
TRD2 - 超高场分子成像和光谱
- 批准号:
10376733 - 财政年份:2019
- 资助金额:
$ 56.93万 - 项目类别:
Development of an Optimal MRI Platform for Prostate Investigations at 7 Tesla
开发用于 7 特斯拉前列腺研究的最佳 MRI 平台
- 批准号:
8234736 - 财政年份:2012
- 资助金额:
$ 56.93万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Standard Grant














{{item.name}}会员




