Improving Image-Guided Radiation Therapy of Gliomas with High-Resolution MR Spectroscopic Imaging
利用高分辨率磁共振波谱成像改善神经胶质瘤的图像引导放射治疗
基本信息
- 批准号:10501516
- 负责人:
- 金额:$ 51.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdjuvant RadiotherapyAdoptionAreaBiologicalBiological MarkersBiopsyBlood - brain barrier anatomyBrainClinicalDataDevelopmentDoseEvaluationExcisionExtravasationGlioblastomaGliomaGoalsGuidelinesHeadHeterogeneityHistologyHypoxiaImageImage EnhancementImaging technologyInfiltrationInflammationInvestigationKnowledgeLabelLocationMachine LearningMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMalignant - descriptorMalignant GliomaMalignant neoplasm of brainMapsMeasurementMetabolicMethodsMicroscopicMotionNecrosisNewly DiagnosedNoiseOperative Surgical ProceduresOutcomePatientsPerformancePhase I Clinical TrialsPhase III Clinical TrialsPositron-Emission TomographyPostoperative PeriodPredispositionProtonsRadiation therapyRecurrenceReproducibilityResearchResolutionSamplingScanningSensitivity and SpecificitySignal TransductionSpecificitySpecimenSpeedStructureTechniquesTimeTissuesTumor VolumeUncertaintyUnited StatesValidationWaterbasebrain tissuebrain tumor imagingchemotherapyclinical applicationcomputerized data processingcontrast enhanceddata acquisitiondensityexperimental studyfollow-upimage guided radiation therapyimaging modalityimprovedin vivoinnovationischemic injurymetabolic imagingmolecular imagingneoplasticneoplastic cellnovelquantumresearch clinical testingsimulationspectroscopic imagingstandard caretooltreatment planningtumor
项目摘要
ABSTRACT
Glioma make up 80% of all primary malignant brain tumors. The current standard treatment for newly diagnosed
gliomas includes maximal surgical resection, radiation therapy (RT), and chemotherapy. A key technical
challenge in RT treatment planning is accurate target volume delineation of gliomas. The current clinical
guidelines for target volume delineation rely primarily on structural Magnetic Resonance Imaging (MRI) images.
Gross Tumor Volume (GTV) is defined based on contrast-enhanced T1-weighted MRI and T2-weighted MRI.
However, structural MRI alone lacks specificity for delineation of true tumor boundaries. Accordingly, Clinical
Target Volume (CTV) is often defined as the GTV plus a large margin (e.g., 20-25 mm) to account for possible
microscopic infiltration. The lack of specificity of structural MRI is a critical factor limiting the investigation and
clinical application of new RT techniques for better clinical outcome. MR spectroscopic imaging (MRSI) has long
been recognized as a potentially powerful tool for label-free molecular imaging of brain tumor. In a recent Phase
I clinical trial, MRSI is used to guide dose escalation in RT for Glioblastoma multiforme patients, showing very
promising preliminary results. Although general clinical applications of MRSI have been impeded by its limited
spatial resolution and long scan time, significant progresses have been made in addressing these technical
challenges over the past decade using advanced data acquisition and processing methods. Our group have
successfully developed a powerful MRSI technology, known as SPICE (SPectroscopic Imaging by exploiting
spatiospectral CorrElation). SPICE effectively integrates rapid scanning, sparse sampling, quantum simulation
of molecule resonance structures, and machine learning to enable rapid high-resolution MRSI. Preliminary
results by our and other groups have shown an exciting potential of SPICE to achieve an unprecedented
combination of resolution, speed, and SNR for metabolic imaging. We have also demonstrated, for the first time,
the feasibility of mapping T1, T2 and proton-density parameters of brain tissues using the unsuppressed water
signals from the SPICE scans. The primary goal of this project is to leverage this significant advance in MRSI
technology and investigate the use of high-resolution metabolic and structural information to achieve more
accurate target volume delineation for RT treatment planning of gliomas. We will: 1) further develop and optimize
SPICE for MRI/MRSI-guided RT of gliomas in clinical settings, 2) perform systematic performance evaluation of
the proposed method on phantoms, healthy subjects, and glioma patients, and 3) investigate the use of metabolic
and structural biomarkers for delineation of biological target volume to improve image-guided RT of gliomas. The
proposed research is innovative in developing a novel molecular imaging technology and a timely effort on
improving RT treatment planning of gliomas with quantitative metabolic and structural biomarkers. Successful
completion of the project will have a significant impact on image-guided RT for gliomas, opening up new
opportunities for better control of recurrence in glioma patients using dose escalated RT.
摘要
胶质瘤占所有原发性恶性脑肿瘤的80%。目前的标准治疗新诊断的
神经胶质瘤的治疗包括最大手术切除、放射治疗(RT)和化学治疗。一个关键的技术
RT治疗计划中的挑战是准确描绘胶质瘤的靶体积。当前临床
目标体积描绘的指导原则主要依赖于结构磁共振成像(MRI)图像。
根据对比增强T1加权MRI和T2加权MRI定义大体肿瘤体积(GTV)。
然而,单独的结构MRI缺乏描绘真实肿瘤边界的特异性。因此,临床
目标体积(CTV)通常被定义为GTV加上大余量(例如,20-25 mm),以考虑可能的
微观渗透结构MRI缺乏特异性是限制研究的关键因素,
新的RT技术的临床应用,以获得更好的临床结果。磁共振波谱成像(MRSI)已经很长时间
被认为是一个潜在的强大的工具,脑肿瘤的无标记分子成像。在最近的一个阶段
在一项临床试验中,MRSI用于指导多形性胶质母细胞瘤患者的RT剂量递增,
有希望的初步结果。尽管MRSI的一般临床应用受到其有限的限制,
空间分辨率和长扫描时间,在解决这些技术方面已经取得了重大进展
在过去十年中,使用先进的数据采集和处理方法,我们组有
成功开发了强大的MRSI技术,称为SPICE(Spectroscopic Imaging by Exploiting)
空间谱相关)。SPICE有效地集成了快速扫描、稀疏采样、量子模拟
分子共振结构和机器学习,以实现快速高分辨率MRSI。初步
我们和其他小组的研究结果表明,SPICE具有令人兴奋的潜力,可以实现前所未有的
代谢成像的分辨率、速度和SNR的组合。我们还首次证明,
利用非抑制水映射脑组织T1、T2和质子密度参数的可行性
SPICE扫描的信号该项目的主要目标是利用MRSI的这一重大进展
技术,并研究使用高分辨率的代谢和结构信息,以实现更多
准确的靶体积勾画,用于胶质瘤的RT治疗计划。我们将:1)进一步发展和优化
SPICE在临床环境中用于MRI/MRI引导的胶质瘤RT,2)进行系统性能评价,
所提出的方法对幻影,健康受试者,和神经胶质瘤患者,和3)调查使用代谢
以及用于描绘生物靶体积以改善胶质瘤的图像引导RT的结构生物标志物。的
拟议的研究在开发新型分子成像技术方面具有创新性,并及时努力
用定量代谢和结构生物标志物改善胶质瘤的RT治疗计划。成功
该项目的完成将对胶质瘤的图像引导RT产生重大影响,开辟新的
使用剂量递增RT更好地控制胶质瘤患者复发的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Ma其他文献
Chao Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Ma', 18)}}的其他基金
Improving Image-Guided Radiation Therapy of Gliomas with High-Resolution MR Spectroscopic Imaging
利用高分辨率磁共振波谱成像改善神经胶质瘤的图像引导放射治疗
- 批准号:
10704143 - 财政年份:2022
- 资助金额:
$ 51.42万 - 项目类别:
Antigen-specific immune mechanisms of neuronal hyperexcitability and chronic pain
神经元过度兴奋和慢性疼痛的抗原特异性免疫机制
- 批准号:
7760594 - 财政年份:2009
- 资助金额:
$ 51.42万 - 项目类别:
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 51.42万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 51.42万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)