Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
基本信息
- 批准号:10041119
- 负责人:
- 金额:$ 9.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsAwarenessBiological ModelsClinicClinicalComputer SimulationDataData SetDetectionDiagnosisDistant MetastasisDoseEarly DiagnosisEnhancing LesionFOLH1 geneGalliumGoalsHalf-LifeImageIncidenceInjectionsLabelLeadLesionLocationMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMethodologyMethodsModelingNeuroendocrine TumorsNoiseOncologyOutcomeOutputPatientsPerformancePhasePhysicsPlayPositronPositron-Emission TomographyPrevalenceProtocols documentationRadionuclide ImagingReaderRecoveryRecurrenceResolutionRoleSavingsSensitivity and SpecificityStagingTestingTimeTracerTrainingUnited StatesValidationVendorX-Ray Computed Tomographybasecancer typedeep learningdenoisingeffectiveness validationexperiencefluorodeoxyglucoseimage reconstructionimaging modalityimprovedlearning strategymolecular imagingneural networkneuroendocrine differentiationnoveloutcome forecastpediatric patientspentetreotideradiologistradiotracerreconstructionroutine imagingsuccesstreatment optimizationtreatment planningtumor
项目摘要
Optimization of PET Image Reconstruction for Lesion Detection
Abstract
PET is a molecular imaging modality widely used in oncology studies due to its high sensitivity and the
potential of early diagnosis. For neuroendocrine tumors (NETs), 68Ga-DOTATATE PET has been
recently used in clinical routine for imaging NETs in adult and pediatric patients since 2016. It plays an
important role in the diagnosis and staging of NETs. However, compared to 18F-FDG PET, the image
quality of 68Ga-DOTATATE PET is lower due to much larger positron range, shorter half-life, and lower
dose administration limited by generator capacity. All of these compromises the lesion detectability of
68Ga-DOTATATE PET, especially for small lesions, and can potentially lead to inaccurate NET
diagnosis. As 68Ga-DOTATATE PET is increasingly used in clinics, there is an urgent and unmet need
to further optimize 68Ga-DOTATATE PET/CT imaging for NET detection. Recently, data-driven
methods have been developed for PET image denoising, where the PET system model is not
considered. As the tumor-to-background ratio of 68Ga-DOTATATE PET is greater than 18F-FDG PET,
the lesion recovery of 68Ga-DOTATATE PET can be hugely influenced by the smoothing effects as well
as potential mismatches between training and testing datasets. In this study, we propose a novel data-
informed and lesion detection-driven image reconstruction framework. The PET system model, image
denoising module, and lesion-detection module will all be included in this reconstruction framework.
The two specific aims of this exploratory proposal are (1) to develop a lesion detection-driven PET
image reconstruction framework and validate it based on comprehensive computer simulations, (2) to
apply the proposed reconstruction framework to existing clinical 68Ga-DOTATATE PET/CT datasets
and test it based on various figure-of-merits. We expect that the integrated outcome of the specific aims
will be a novel and robust image reconstruction framework to better recover lesions in a 68Ga-
DOTATATE PET scan, which is essential for NET managements.
用于病灶检测的PET图像重建的优化
摘要
PET是广泛用于肿瘤学研究的分子成像模式,这是由于其高灵敏度和高分辨率。
早期诊断的潜力。对于神经内分泌肿瘤(NET),68 Ga-DOTATATE PET已被用于
自2016年以来,最近用于成人和儿科患者的临床常规NET成像。发挥着
在NET的诊断和分期中发挥重要作用。然而,与18F-FDG PET相比,
68 Ga-DOTATATE PET的质量较低,这是由于正电子范围大得多,半衰期短,
给药剂量受发电机容量限制。所有这些都损害了
68 Ga-DOTATATE PET,尤其是小病变,可能导致NET不准确
诊断.随着68 Ga-DOTATATE PET越来越多地用于临床,
进一步优化用于NET检测的68 Ga-DOTATATE PET/CT成像。最近,数据驱动
已经开发了用于PET图像去噪的方法,其中PET系统模型不
考虑了由于68 Ga-DOTATATE PET的肿瘤与背景比大于18F-FDG PET,
68 Ga-DOTATATE PET的损伤恢复也会受到平滑效应的巨大影响
作为训练和测试数据集之间的潜在不匹配。在这项研究中,我们提出了一个新的数据-
知情和病变检测驱动的图像重建框架。PET系统模型、图像
去噪模块和损伤检测模块都将被包括在该重建框架中。
本探索性建议的两个具体目标是:(1)开发病变检测驱动的PET
图像重建框架,并验证它的基础上全面的计算机模拟,(2),
将所提出的重建框架应用于现有的临床68 Ga-DOTATATE PET/CT数据集
并根据各种品质因数对其进行测试。我们期望,具体目标的综合成果
将是一种新颖和强大的图像重建框架,以更好地恢复68 Ga中的病变,
DOTATATE PET扫描,对于NET管理至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuang Gong其他文献
Kuang Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuang Gong', 18)}}的其他基金
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
- 批准号:
10501804 - 财政年份:2022
- 资助金额:
$ 9.43万 - 项目类别:
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
- 批准号:
10933186 - 财政年份:2022
- 资助金额:
$ 9.43万 - 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
- 批准号:
10206141 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
Correction of Partial Volume Effects in PET for Alzheimer's Disease Using Unsupervised Deep Learning
使用无监督深度学习校正阿尔茨海默病 PET 中的部分体积效应
- 批准号:
9974892 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)