Optimization of PET Image Reconstruction for Lesion Detection

用于病变检测的 PET 图像重建优化

基本信息

  • 批准号:
    10206141
  • 负责人:
  • 金额:
    $ 8.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Optimization of PET Image Reconstruction for Lesion Detection Abstract PET is a molecular imaging modality widely used in oncology studies due to its high sensitivity and the potential of early diagnosis. For neuroendocrine tumors (NETs), 68Ga-DOTATATE PET has been recently used in clinical routine for imaging NETs in adult and pediatric patients since 2016. It plays an important role in the diagnosis and staging of NETs. However, compared to 18F-FDG PET, the image quality of 68Ga-DOTATATE PET is lower due to much larger positron range, shorter half-life, and lower dose administration limited by generator capacity. All of these compromises the lesion detectability of 68Ga-DOTATATE PET, especially for small lesions, and can potentially lead to inaccurate NET diagnosis. As 68Ga-DOTATATE PET is increasingly used in clinics, there is an urgent and unmet need to further optimize 68Ga-DOTATATE PET/CT imaging for NET detection. Recently, data-driven methods have been developed for PET image denoising, where the PET system model is not considered. As the tumor-to-background ratio of 68Ga-DOTATATE PET is greater than 18F-FDG PET, the lesion recovery of 68Ga-DOTATATE PET can be hugely influenced by the smoothing effects as well as potential mismatches between training and testing datasets. In this study, we propose a novel data- informed and lesion detection-driven image reconstruction framework. The PET system model, image denoising module, and lesion-detection module will all be included in this reconstruction framework. The two specific aims of this exploratory proposal are (1) to develop a lesion detection-driven PET image reconstruction framework and validate it based on comprehensive computer simulations, (2) to apply the proposed reconstruction framework to existing clinical 68Ga-DOTATATE PET/CT datasets and test it based on various figure-of-merits. We expect that the integrated outcome of the specific aims will be a novel and robust image reconstruction framework to better recover lesions in a 68Ga- DOTATATE PET scan, which is essential for NET managements.
用于病变检测的 PET 图像重建优化 抽象的 PET 是一种广泛应用于肿瘤学研究的分子成像方式,因为它具有高灵敏度和 早期诊断的潜力。对于神经内分泌肿瘤 (NET),68Ga-DOTATATE PET 已被 自 2016 年以来,最近在成人和儿童患者的 NET 成像临床常规中使用。 在 NET 的诊断和分期中发挥着重要作用。然而,与 18F-FDG PET 相比,图像 68Ga-DOTATATE PET 的质量较低,因为正电子射程较大、半衰期较短且较低 剂量管理受发生器容量限制。所有这些都会影响病变的可检测性 68Ga-DOTATATE PET,特别是对于小病变,可能会导致 NET 不准确 诊断。随着68Ga-DOTATATE PET越来越多地应用于临床,存在着迫切且未满足的需求 进一步优化 68Ga-DOTATATE PET/CT 成像以进行 NET 检测。最近,数据驱动 PET 图像去噪的方法已经开发出来,而 PET 系统模型还没有 经过考虑的。由于 68Ga-DOTATATE PET 的肿瘤与背景比大于 18F-FDG PET, 68Ga-DOTATATE PET 的病变恢复也会受到平滑效果的巨大影响 作为训练和测试数据集之间潜在的不匹配。在这项研究中,我们提出了一种新颖的数据- 知情且病变检测驱动的图像重建框架。 PET系统模型、图像 去噪模块和病变检测模块都将包含在这个重建框架中。 该探索性提案的两个具体目标是 (1) 开发病变检测驱动的 PET 图像重建框架并基于全面的计算机模拟对其进行验证,(2) 将提出的重建框架应用于现有的临床 68Ga-DOTATATE PET/CT 数据集 并根据各种品质因数进行测试。我们期望具体目标的综合成果 将是一个新颖且强大的图像重建框架,以更好地恢复 68Ga- 中的病变 DOTATATE PET 扫描,这对于 NET 管理至关重要。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Data-Driven Gated PET/CT Free of Misregistration Artifacts.
Impact of acquisition time and misregistration with CT on data-driven gated PET.
  • DOI:
    10.1088/1361-6560/ac5f73
  • 发表时间:
    2022-04-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Thomas, M. Allan;Meier, Joseph G.;Mawlawi, Osama R.;Sun, Peng;Pan, Tinsu
  • 通讯作者:
    Pan, Tinsu
Data-driven gated PET/CT: implications for lesion segmentation and quantitation.
  • DOI:
    10.1186/s40658-021-00411-5
  • 发表时间:
    2021-08-28
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Thomas MA;Pan T
  • 通讯作者:
    Pan T
Data-driven gated CT: An automated respiratory gating method to enable data-driven gated PET/CT.
  • DOI:
    10.1002/mp.15620
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Pan, Tinsu;Thomas, M. Allan;Luo, Dershan
  • 通讯作者:
    Luo, Dershan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuang Gong其他文献

Kuang Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuang Gong', 18)}}的其他基金

Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10501804
  • 财政年份:
    2022
  • 资助金额:
    $ 8.96万
  • 项目类别:
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10933186
  • 财政年份:
    2022
  • 资助金额:
    $ 8.96万
  • 项目类别:
Correction of Partial Volume Effects in PET for Alzheimer's Disease Using Unsupervised Deep Learning
使用无监督深度学习校正阿尔茨海默病 PET 中的部分体积效应
  • 批准号:
    9974892
  • 财政年份:
    2020
  • 资助金额:
    $ 8.96万
  • 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
  • 批准号:
    10041119
  • 财政年份:
    2020
  • 资助金额:
    $ 8.96万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了