A novel microfluidic system for studying brain chemistry and application to study of enkephalin-degrading enzymes in pain perception

一种用于研究脑化学的新型微流体系统及其在疼痛感知中脑啡肽降解酶研究中的应用

基本信息

项目摘要

The broad, long-term objectives of this technology-driven project are (1) to continue developing and (2) apply a powerful, new, simple, microfluidic device (and method for its use) for determining rates of processes in the extracellular space of brain in vivo. A specific focus is hydrolysis of neuropeptides in specific brain regions in awake, behaving animals. Method: The implantable device uses electroosmotic flow to direct solutions of substrates, with or without inhibitors, through brain tissue and direct unreacted substrate and products to an online measurement system or collect them for later analysis. Uniquely, this device and method uses natural substrates in vivo. The particular focus is ectopeptidases, the “ecto” implying cell-surface (membrane-bound) enzymes that hydrolyze peptides in the extracellular space. A typical experiment infuses a substrate peptide and an unhydrolyzable D-amino acid peptide analog with or without a selective inhibitor. The unhydrolyzable peptide represents initial substrate concentration. Michaelis-Menten rate parameters are derived from experimental data using a validated approach based on a simulation of the measurement. The simulation is required to correct for diffusion of substrate and products in the tissue. Health relatedness: There are many neuropeptides, and many critical brain functions such as learning and memory, pain perception, protection from injury due to anoxia, and many others that rely on neuropeptide concentrations in the extracellular space. But there is currently no means to directly measure the impact of the ubiquitous ectopeptidases on those concentrations. The proposed microfluidic device and the simulation provide the means to measure the rate of hydrolysis of active peptides. The proposed method permits quantitative modeling of peptide activity (e.g., Vmax) in the extracellular space in vivo. Specific Aims: There are two parallel, independent aims. One improves the device. The other applies the existing novel microfluidic device to a question about pain perception. (1) Improve upon the existing, fully functional device to make experimental measurements with more flexibility in choosing substate/inhibitor concentrations being passed through the tissue; to extend the device’s capability to reach deeper brain regions. (2) Apply an existing, fully functional microfluidic device to determine differences in specific ectopeptidase activities in the anterior cingulate cortex between rats experiencing mild chronic pain and controls.
这个由技术驱动的项目的广泛、长期目标是(1)继续开发和(2)应用 用于测定过程速率的强大的、新的、简单的微流控装置(及其使用方法) 活体脑细胞外间隙。一个特别的焦点是脑部特定区域的神经肽的水解性。 醒着,举止乖巧的动物。方法:该植入器利用电渗流引导溶液 底物,有或没有抑制剂,通过脑组织,并将未反应的底物和产物引导到 在线测量系统或收集它们以供以后分析。独一无二的是,该设备和方法使用Natural 体内的底物。特别的焦点是外肽酶,“外肽酶”意味着细胞表面(膜结合)。 在细胞外空间中对多肽进行水解酶。一个典型的实验注入底物多肽和 一种不可水解的D-氨基酸肽类似物,带有或不带有选择性抑制剂。不可水解肽 表示初始底物浓度。从实验数据导出了Michaelis-Menten速率参数 使用基于测量模拟的有效方法。需要进行模拟才能进行校正 底物和产物在组织中的扩散。与健康相关:有许多神经肽,而且很多 关键的大脑功能,如学习和记忆、疼痛感知、对缺氧损伤的保护,以及 许多其他依赖于细胞外空间神经肽浓度的细胞。但目前还没有办法 直接测量无处不在的外肽酶对这些浓度的影响。建议数 微流控装置和模拟提供了测量活性多肽的水解率的手段。 所提出的方法允许对细胞外空间中的多肽活性(例如,Vmax)进行定量建模 活着。具体目标:有两个平行的、独立的目标。一是对设备进行了改进。另一种方法是应用 现有的新型微流控设备解决了一个关于疼痛感知的问题。(1)在现有的基础上全面改进 功能装置,在选择底态/抑制剂方面具有更大的灵活性进行实验测量 浓度通过组织;以扩展该设备的能力,以达到更深的大脑区域。 (2)应用现有的、功能齐全的微流控装置来确定特定外肽酶的差异 轻度慢性疼痛大鼠和对照组大鼠前扣带回皮质的活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN G. WEBER其他文献

STEPHEN G. WEBER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN G. WEBER', 18)}}的其他基金

A novel microfluidic system for studying brain chemistry and application to study of enkephalin-degrading enzymes in pain perception
一种用于研究脑化学的新型微流体系统及其在疼痛感知中脑啡肽降解酶研究中的应用
  • 批准号:
    10647766
  • 财政年份:
    2022
  • 资助金额:
    $ 53.2万
  • 项目类别:
Fast Online Microdialysis/Liquid Chromatography for Monoamine Neurotransmitters
单胺神经递质的快速在线微透析/液相色谱
  • 批准号:
    9287935
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
Fast Online Microdialysis/Liquid Chromatography for Monoamine Neurotransmitters
单胺神经递质的快速在线微透析/液相色谱
  • 批准号:
    9091642
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
Fast Online Microdialysis/Liquid Chromatography for Monoamine Neurotransmitters
单胺神经递质的快速在线微透析/液相色谱
  • 批准号:
    8750990
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
Fast Online Microdialysis/Liquid Chromatography for Monoamine Neurotransmitters
单胺神经递质的快速在线微透析/液相色谱
  • 批准号:
    8908057
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
Serotonin Transporter Kinetics In Vivo by Microdialysis/Capillary UPLC
通过微透析/毛细管 UPLC 测定体内血清素转运蛋白动力学
  • 批准号:
    7599178
  • 财政年份:
    2008
  • 资助金额:
    $ 53.2万
  • 项目类别:
Serotonin Transporter Kinetics In Vivo by Microdialysis/Capillary UPLC
通过微透析/毛细管 UPLC 测定体内血清素转运蛋白动力学
  • 批准号:
    7450078
  • 财政年份:
    2008
  • 资助金额:
    $ 53.2万
  • 项目类别:
Supported Fluorous Lipids for Triphasic Reactions
用于三相反应的负载型氟脂质
  • 批准号:
    6582713
  • 财政年份:
    2003
  • 资助金额:
    $ 53.2万
  • 项目类别:
Single Cell Electroporation
单细胞电穿孔
  • 批准号:
    8185059
  • 财政年份:
    2003
  • 资助金额:
    $ 53.2万
  • 项目类别:
Single Cell Electroporation
单细胞电穿孔
  • 批准号:
    6915717
  • 财政年份:
    2003
  • 资助金额:
    $ 53.2万
  • 项目类别:

相似海外基金

Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
  • 批准号:
    EP/Y03726X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
  • 批准号:
    EP/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
  • 批准号:
    BB/X014673/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
  • 批准号:
    MR/Y011627/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
  • 批准号:
    AH/V015834/2
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
  • 批准号:
    2888014
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
  • 批准号:
    2889627
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
  • 批准号:
    23K19678
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了