An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes

一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录

基本信息

  • 批准号:
    10500961
  • 负责人:
  • 金额:
    $ 47.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT: Action potentials are temporal changes of the electrical voltage across the cell membrane, which are crucial for the physiological function of excitable cells such as neurons and cardiomyocytes. In the human heart, cardiac action potentials coordinate the synchronous contraction and relaxation of billions of cardiomyocytes. The waveforms of intracellular action potentials reflect the coordination of a multitude of ion channels, some of which are affected by pharmaceutical drugs to collectively contribute toward proarrhythmic risks. The waveforms of intracellular action potentials also reflect the subtype such as atrial-, ventricular-, or nodal-like cardiomyocytes, or their maturation status. Measurements of intracellular action potentials are mostly performed by the patch clamp technique, which is accurate but invasive, one cell at a time, laborious, and requires specialized expertise. Due to its low throughput and invasive nature, patch clamp is not suitable for drug screening or functional characterization of human pluripotent stem cell derived cardiomyocytes. In the last decade, vertically-aligned and solid-state nanoelectrode arrays (NEAs) have emerged as promising tools with the potential of achieving parallelizable and minimally invasive cardiac AP recording from monolayers of stem-cell-derived cardiomyocytes. However, despite the significant progress and the strong interest, the NEA technology has largely been confined to research groups that develop the technologies, instead of being broadly adopted by the research community. We identified several critical challenges that have hindered such effort. In this proposal, through the partnership between an academic lab and a startup company, we aim to overcome these challenges and develop a robust electrophysiological tool that enables reliable, scalable, and long-term intracellular recording of cardiomyocytes. The goal of this proposal aims to transition the NEA technology from a demonstration of possibility to a status useful to end-users.
项目摘要/摘要: 动作电位是整个细胞膜电压的时间变化,这对于至关重要 可激发细胞的生理功能,例如神经元和心肌细胞。在人心中,心脏 动作电位协调了数十亿个心肌细胞的同步收缩和放松。这 细胞内作用电位的波形反映了许多离子通道的协调,其中一些是 受药物的影响,共同促进心律失常的风险。波形 细胞内作用电位还反映了亚型,例如心房,心室或淋巴结状的心肌细胞, 或他们的成熟状态。细胞内动作电位的测量主要由斑块进行 夹具技术是准确但具有侵入性的,一次是一个细胞,费力,需要专业知识。 由于其低吞吐量和侵入性性质,斑块夹不适合药物筛查或功能性 人多能干细胞衍生的心肌细胞的表征。 在过去的十年中,垂直对准和固态纳米电极阵列(NEAS)已成为有前途的 具有从单层可行的和微创的心脏AP录制的工具 干细胞衍生的心肌细胞。但是,尽管进展很大和浓厚的兴趣,但NEA 技术在很大程度上仅限于开发技术的研究小组,而不是广泛地 由研究界通过。我们确定了一些阻碍了这种努力的关键挑战。在 通过学术实验室和一家初创公司之间的合作伙伴关系,我们的旨在克服 这些挑战并开发出强大的电生理工具,可实现可靠,可扩展和长期 心肌细胞的细胞内记录。该提案的目标旨在将NEA技术从 证明对最终用户有用的状态的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bianxiao Cui其他文献

Bianxiao Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bianxiao Cui', 18)}}的其他基金

An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
  • 批准号:
    10641918
  • 财政年份:
    2022
  • 资助金额:
    $ 47.66万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10190148
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10361478
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10576312
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
  • 批准号:
    10623311
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
  • 批准号:
    10201347
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
  • 批准号:
    10413984
  • 财政年份:
    2021
  • 资助金额:
    $ 47.66万
  • 项目类别:
Developing nanoscale electrophysiology sensors for robust intracellular recording
开发纳米级电生理学传感器以实现强大的细胞内记录
  • 批准号:
    9423772
  • 财政年份:
    2017
  • 资助金额:
    $ 47.66万
  • 项目类别:
Engineering external forces for manipulating cargo transport in live neurons
设计外力来操纵活神经元中的货物运输
  • 批准号:
    8358351
  • 财政年份:
    2012
  • 资助金额:
    $ 47.66万
  • 项目类别:
Imaging nerve growth factor signal transduction in live neurons
活神经元中神经生长因子信号转导的成像
  • 批准号:
    7223656
  • 财政年份:
    2006
  • 资助金额:
    $ 47.66万
  • 项目类别:

相似海外基金

Inhibition of MMP-9 Activity Impairs Working Memory in Zebrafish Through Changes in Overall Hippocampal Excitation
MMP-9 活性的抑制通过整体海马兴奋的变化损害斑马鱼的工作记忆
  • 批准号:
    10610054
  • 财政年份:
    2022
  • 资助金额:
    $ 47.66万
  • 项目类别:
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
  • 批准号:
    10615901
  • 财政年份:
    2022
  • 资助金额:
    $ 47.66万
  • 项目类别:
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
  • 批准号:
    10478331
  • 财政年份:
    2022
  • 资助金额:
    $ 47.66万
  • 项目类别:
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
  • 批准号:
    10641918
  • 财政年份:
    2022
  • 资助金额:
    $ 47.66万
  • 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
  • 批准号:
    9915977
  • 财政年份:
    2019
  • 资助金额:
    $ 47.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了