Flexible Macromolecular Crystallography
柔性高分子晶体学
基本信息
- 批准号:10506287
- 负责人:
- 金额:$ 46.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsActive SitesAgeArtificial IntelligenceAttentionBindingBiologicalBiological AssayBiological SciencesBlood capillariesChemicalsCollaborationsCollectionCommunitiesComplementComputer softwareCryoelectron MicroscopyCrystallizationCrystallographyDataData AnalysesData CollectionData SetDecision MakingDevicesDiagnosticDiagnostic ProcedureDiagnostic testsDimethyl SulfoxideDiseaseDropsElementsEpiphysial cartilageFamiliarityFeedbackFosteringGeographyGoalsGrowthHarvestHealthImageIn SituIndividualLibrariesLigandsLiquid substanceLocationLogisticsMachine LearningMathematicsMeasurementMeasuresMetalsMethodsModelingMolecularMolecular ConformationMotionNoiseOpticsPhasePreparationProceduresProcessPropertyProteinsProtocols documentationResearch Project GrantsResistanceResolutionResourcesRobotRoboticsRoentgen RaysSamplingServicesShapesSignal TransductionSourceStructureSynchrotronsSystemTechniquesTechnologyTemperatureTertiary Protein StructureTestingTrainingVariantbasebeamlinecoronavirus diseasedata accessdata qualitydesignexperimental studyflexibilityimprovedinsightmultiple datasetsoperationpredictive toolsscreeningsmall moleculestructural biologysuccesstool
项目摘要
Project Summary/Abstract - Core 3 – Flexible Macromolecular Crystallography
This 3rd Technology Operations Core (TOC3) complements TOC1 by diversifying the ALS-ENABLE
technology base to maximize flexibility in this now transformative era for structural biology. Artificial intelligence
(AI) has revolutionized solving the phase problem, and we will not only make these new structure prediction
tools accessible to our User community, but also other AIs that benefit our workflows, such as object location of
sample loops and crystals, diffraction image interpreters or variational auto encoders for modelling protein
domain motions. These will be put to use once they are proven effective. For example, we expect to enable
efficient yet unattended in-situ serial data collection direct from crystallization trays by training now mature and
off-the-shelf AI technology to locate diffraction-quality crystals in their growth drops. If successful, even a
modest improvement in hit rate will revolutionize serial data collection using our in-situ goniometer. This in-situ
capability also completes a chain of diagnostic tests of the sample preparation process, allowing our Users to
understand the origins of poor diffraction and focus their efforts appropriately. This diagnostics chain leverages
the capabilities of TOC1 micro-focus, TOC2 solution stability, and TOC4 mapping molecular interfaces.
Our uniquely accommodating robotics solution with broad pin compatibility will get a capacity upgrade to help
ease the transitions our User community will have to make from synchrotron to synchrotron as APS and then
ALS undergo long shutdowns for major upgrades. We will upgrade our X-ray optics to match the properties of
the ALS-U source. We will also upgrade robotics to provide remote access data collection at non-cryo
temperatures, ranging from -20C to +50C, making these valuable multi-temperature tools accessible to a
geographically diverse User community. Functional studies at these temperatures will be assisted by rolling out
state-of-the-art difference-data analysis software, such as PanDDA, as part of beamline workflows. By explicitly
supporting difference data analysis our users will have access to state-of-the-art technology for visualizing
weak yet critical difference features, such as low-occupancy ligands and functionally-relevant conformational
shifts. And because fragment screening is a critical tool for the bioscience community to quickly respond to an
emerging health crisis, we will support as well as document best practices such as DMSO tolerance testing
in our ALS-ENABLE protocols as well as foster collaborations between user groups with access to advanced
yet shareable sample preparation tools such as fragment libraries and acoustic drop liquid handlers. Rather
than leave users to their own devices to organize and analyze their data, we will deploy ISPyB/SynchWeb, the
world’s most heavily used LIMS for structural biology data. Tools for merging multi-crystal data for improved
data quality that performed well in our global challenge data set competition will be deployed under this
framework. This will not only make cross-synchrotron data analysis available in one place, but maintain a level
of familiarity to ease the transition of our Users to and from other synchrotrons. We group our aims by the
mathematical operations they entail: adding data together to improve signal (Aim1), modulation of the sample
to induce a change (Aim2), and subtraction of data to reveal the result (Aim3).
项目摘要/摘要-核心3 -柔性大分子晶体学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Holton其他文献
James M Holton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Holton', 18)}}的其他基金
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10162611 - 财政年份:2017
- 资助金额:
$ 46.54万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统错误
- 批准号:
9365573 - 财政年份:2017
- 资助金额:
$ 46.54万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
9707556 - 财政年份:2017
- 资助金额:
$ 46.54万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10710387 - 财政年份:2017
- 资助金额:
$ 46.54万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 46.54万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




