Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
基本信息
- 批准号:10710387
- 负责人:
- 金额:$ 30.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActive SitesAreaBackBindingBiological ModelsBiological ProcessBiologyBreathingCatalysisChemistryCryoelectron MicroscopyCrystallographyDataData CollectionData SetDepositionDetectionDimensionsDiscriminationDiseaseDoseElectronsHumidityHybridsHydrogenImageLigand BindingLigandsLightingLipidsMapsMembrane ProteinsMetalsMethodologyMethodsModelingModernizationMolecularMolecular ConformationMolecular StructureMotionMovementNoisePaintPeriodicalsPhotonsProteinsProtocols documentationRadiation induced damageReactionReportingResolutionRoentgen RaysSamplingSeriesSideSignal TransductionSolventsSourceSpottingsStructureSurfaceSynchrotronsSyncopeTechniquesTechnologyTemperatureTestingTimeWaterWorkbeamlinecomputerized data processingconformerdata modelingdensitydetectorelectron densityelectron diffractionexperimental studyimprovedinhibitorinsightinterestmacromoleculemethod developmentmodels and simulationmultiple data sourcesnext generationnon-Nativepreventrestraintsimulationstructural biologysuccessterabytethree dimensional structurethree-dimensional modelingtomographyvectorvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Macromolecular Crystallography (MX) is an established and widely used method for obtaining accurate, high-
resolution 3D models of biological molecules, yet MX data contain information that has yet to be unlocked.
Single-electron changes can be clearly visible at resolutions as low as 3.5 Å if systematic errors can be
eliminated. Creating simulation technologies that can account for these errors will have significant impact on
three fronts: 1) eliminating the structural changes and other caveats of radiation damage, which ultimately
limits the amount of data available from a given sample 2) improving multi-crystal averaging and comparison
by capturing and correcting non-isomorphism, which will open the gateway to arbitrary gains in signal-to-noise,
3) discriminating hotly contested alternative interpretations such as the presence or absence of a bound ligand,
by creating simulations with more realistic solvent and protein models. To move towards damage-free data
from a synchrotron, we will start by implementing a new kind of data collection we call “painting with X-rays”
that leverages modern fast-framing detectors to combine the best features of broad-beam and micro-beam
technologies: low dose contrast and isolation of the best parts of the crystal. We will then enhance zero-dose
extrapolation to handle the rich temporal information made available by finely dividing up the available photons.
We will build on our success correcting non-isomorphism in real space into reciprocal space, enabling merging
of incomplete data such as XFEL stills into parametric structure factor frameworks. These low-dimensional
frameworks will allow selection from a continuum of 3D molecular structures by dialing in desired parameter
values, and will also be applied to cases where the parameters are known quantities, such as time-resolved,
temperature series, humidity, or other reaction coordinates and variables controlled in an experiment. We will
test these framework models against the thousands of non-isomorphous data sets that have been collected at
our beamline and report on best practice. To enable robust interpretation of experimental data, we will extend
these multi-conformer models with simulation-based solvent models. Our work will create standard protocols
for comparing solvent density to alternative interpretations and to quantitatively assess how likely each
simulated situation is compared to the real macromolecular crystallography data. In addition to distinguishing
between different interpretations of the experimental data, improving solvent models will enhance
understanding of how macromolecules influence and interact with other molecules near their surface.
Collectively, we expect the benefits of eliminating these critical systematic errors to be transformative to both
methods development and functional studies using complimentary structural techniques, such as CryoEM,
SAXS, tomography and electron diffraction, especially hybrid methods that combine structural data from
multiple sources.
项目总结/文摘
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis for dimerization quality control.
- DOI:10.1038/s41586-020-2636-7
- 发表时间:2020-10
- 期刊:
- 影响因子:64.8
- 作者:Mena EL;Jevtić P;Greber BJ;Gee CL;Lew BG;Akopian D;Nogales E;Kuriyan J;Rape M
- 通讯作者:Rape M
Sphingomonas sp. KT-1 PahZ2 Structure Reveals a Role for Conformational Dynamics in Peptide Bond Hydrolysis.
- DOI:10.1021/acs.jpcb.1c01216
- 发表时间:2021-06-10
- 期刊:
- 影响因子:0
- 作者:Brambley CA;Yared TJ;Gonzalez M;Jansch AL;Wallen JR;Weiland MH;Miller JM
- 通讯作者:Miller JM
GHB analogs confer neuroprotection through specific interaction with the CaMKIIα hub domain.
- DOI:10.1073/pnas.2108079118
- 发表时间:2021-08-03
- 期刊:
- 影响因子:11.1
- 作者:Leurs U;Klein AB;McSpadden ED;Griem-Krey N;Solbak SMØ;Houlton J;Villumsen IS;Vogensen SB;Hamborg L;Gauger SJ;Palmelund LB;Larsen ASG;Shehata MA;Kelstrup CD;Olsen JV;Bach A;Burnie RO;Kerr DS;Gowing EK;Teurlings SMW;Chi CC;Gee CL;Frølund B;Kornum BR;van Woerden GM;Clausen RP;Kuriyan J;Clarkson AN;Wellendorph P
- 通讯作者:Wellendorph P
Structure of the Cladosporium fulvum Avr4 effector in complex with (GlcNAc)6 reveals the ligand-binding mechanism and uncouples its intrinsic function from recognition by the Cf-4 resistance protein.
- DOI:10.1371/journal.ppat.1007263
- 发表时间:2018-08
- 期刊:
- 影响因子:6.7
- 作者:Hurlburt NK;Chen LH;Stergiopoulos I;Fisher AJ
- 通讯作者:Fisher AJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Holton其他文献
James M Holton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Holton', 18)}}的其他基金
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10162611 - 财政年份:2017
- 资助金额:
$ 30.85万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统错误
- 批准号:
9365573 - 财政年份:2017
- 资助金额:
$ 30.85万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
9707556 - 财政年份:2017
- 资助金额:
$ 30.85万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 30.85万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 30.85万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 30.85万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




