Specialized Macromolecular Crystallography
专业高分子晶体学
基本信息
- 批准号:9370116
- 负责人:
- 金额:$ 36.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAwardBackBindingBiological AssayBlood capillariesCharacteristicsCommunitiesCrystallizationCrystallographyDataData CollectionData QualityData SetDefectDiagnostic ProcedureDiseaseDoseDose-RateEffectivenessElementsExplosionFaceFeedbackGeographic DistributionHarvestImageryIn SituLigandsLogisticsMaintenanceMapsMethodsMolecular ConformationMutationOpticsPhasePhilosophyPolarization MicroscopyPolymersPropertyProteinsRadiation induced damageRecommendationResearch InfrastructureResolutionResourcesRoentgen RaysRouteSamplingShapesSignal TransductionSleepSourceSystemTechnologyTemperatureThickTimeWorkX-Ray Tomographybasebeamlinecapillarycombinatorialcomputerized data processingcostdesignexhaustionexperimental studyfile formatimprovedknowledge basemembermigrationoperationoptical imagingscreeningsimulationstructural biologyweb sitex-ray free-electron laser
项目摘要
Project Summary/Abstract - Core 3 – Specialized Macromolecular Crystallography
This Technology Operations Core will serve up nine advanced technologies that are seriously needed by
members of the structural biology user community working on particularly challenging problems. These are: 1)
multi-crystal strategy for when one crystal is not enough, 2) native element phasing for when preparing
derivatives is impractical, 3) in-situ diffraction from trays for when the crystals are too fragile to handle, 4)
diffraction at non-cryogenic temperatures, for functional studies or when cryo-protection makes diffraction
worse, 5) alternative visualization technologies for finding crystals in loops ranging from polarization
microscopy to online X-ray tomography (CBOXAR) and raster grid searches of a small x-ray beam over the
face of the sample to probe for diffraction quality exhaustively, 6) data quality prediction based on first-
principles and at-scale diffraction simulation technology to deduce the best possible data collection parameters
based on all available information about a given sample, 7) a comprehensive array of available beam
properties, including our soon-to-be-completed micro-focus GEMINI beamline 8) automatic optical re-centering
technology (AUORA) to enable autonomous migration of experiments to any ALS beamline, for optimizing
beamline utilization 9) a clear “targeting file format” specification so that, if necessary, experiments can be
migrated outside the ALS, such as to X-ray Free Electron Lasers.
All these technologies will be tied together by the ALS-ENABLE website, which will track not just the samples
and data processing results, but the inter-compatibility relationships between them. This will be essential for
managing the combinatorial explosion of data sets that must be explored to stitch together the best possible
complete data set for a given project. This averaging will be key to native-element phasing, where the signal
from any single sample is seldom good enough for phasing. The website will also serve as a knowledge base,
capable of making recommendations to Users based on all the data they currently have, and the predictions
provided by our uniquely accurate diffraction simulation technology. For example, it will be recommended that
they try in-situ diffraction if SAXS (TOC 2) shows that their molecule is intrinsically ordered but diffraction is
stuck at 6 Å resolution. If in-situ diffraction is also poor, then the recommendation will be to search for a new
crystal form using X-ray Footprinting (outside ALS-ENABLE) or cryo-EM (outside ALS).
We expect this Resource will appeal to a wide regional and national geographic distribution of users. By
addressing the problem of poor diffraction, the need for functional studies at multiple temperatures, the need
for native element phasing, and by de-centralizing the crystal centering problem we will leverage the diversity
of the ALS beamlines into a coherent and easily accessible Resource.
项目概要/摘要-核心3 -专业高分子晶体学
该技术运营核心将提供九项急需的先进技术,
结构生物学用户社区的成员致力于解决特别具有挑战性的问题。它们是:1)
当一个晶体不够时,多晶体策略,2)当准备时,天然元素定相
衍生物是不切实际的,3)当晶体太脆而不能处理时,来自托盘的原位衍射,
非低温下的衍射,用于功能研究或当低温保护使衍射
更糟糕的是,5)用于在从偏振到偏振的循环中找到晶体的替代可视化技术
显微镜到在线X射线断层扫描(CBOXAR)和光栅网格搜索的小X射线束在
6)基于第一-第二衍射面的数据质量预测;
原理和尺度衍射模拟技术,以推导出最佳的数据采集参数
基于关于给定样本的所有可用信息,7)可用波束的综合阵列
性能,包括我们即将完成的微焦点GEMINI光束线8)自动光学重新定心
技术(AUORA)能够将实验自主迁移到任何ALS光束线,以进行优化
光束线利用率9)明确的“目标文件格式”规范,以便在必要时,
迁移到ALS之外,例如X射线自由电子激光器。
所有这些技术都将通过ALS-ENABLE网站联系在一起,该网站不仅跟踪样本,
和数据处理结果,但它们之间的相互兼容关系。这将是必不可少的,
管理必须探索的数据集的组合爆炸,以尽可能最好地缝合在一起
一个完整的数据集为一个给定的项目。这种平均将是本机元件定相的关键,其中信号
从任何单一的样品很少是足够好的相位。该网站还将作为一个知识库,
能够根据用户目前拥有的所有数据和预测向用户提供建议
由我们独特的精确衍射模拟技术提供。例如,将建议
如果SAXS(TOC 2)表明他们的分子是内在有序的,但衍射是
分辨率为6 μ m。如果原位衍射也很差,则建议寻找新的
使用X射线足迹法(ALS-ENABLE外)或cryo-EM(ALS外)确定晶体形式。
我们希望这一资源将吸引广泛的区域和国家地理分布的用户。通过
解决衍射差的问题,需要在多个温度下进行功能研究,需要
对于原生元素定相,通过分散晶体中心问题,我们将利用多样性
将ALS光束线转换为一个连贯且易于获取的资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Holton其他文献
James M Holton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Holton', 18)}}的其他基金
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10162611 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统错误
- 批准号:
9365573 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
9707556 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10710387 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
相似海外基金
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Cooperative Agreement
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
- 批准号:
BB/Y513982/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 36.44万 - 项目类别:
Research Grant














{{item.name}}会员




