Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation

通过下一代模拟消除结构生物学中的关键系统误差

基本信息

  • 批准号:
    9707556
  • 负责人:
  • 金额:
    $ 4.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Data collection in macromolecular crystallography is subject to significant systematic errors that prevent successful data collection on many systems and, ultimately, limit the accuracy of resulting structures. Creating simulation technologies that can account for these errors will have significant impact on three fronts: 1) solving new structures by better accounting for radiation damage, which is responsible for 80% of failed anomalous phasing attempts, 2) improving multi-crystal averaging by simulating non-isomorphism, which will open the gateway to arbitrary gains in signal-to-noise, 3) discriminating hotly contested alternative interpretations such as the presence or absence of a bound ligand, by creating simulations with more realistic solvent models. To move towards “damage-free data” from a synchrotron, we will start by calibrating radiation damage curves on model and DBP samples. Using these curves we will incorporate realistic 3D models of radiation damage to non-cuboid crystals (RADDOSE 3D) into our diffraction image simulator (MLFSOM) to yield a 3D Dose Distribution and Illumination map along the crystal. This will result in a new generation of wavelength- dependent absorption factors for the crystal to complement existing absorption corrections. At the beamline, we will measure a 3D map of the crystal using cone beam online x-ray absorption radiography and a 2D map of the beam profile. These advances will allow us to generate zero-dose extrapolation values, in an open format, that account for experimental crystal and beam geometry. To improve multi-crystal averaging, we will begin by characterizing how non-isomorphism varies as a function of humidity, radiation damage, and functional state. By updating the classic “Crick and Magdoff” simulations of non-isomorphism with increasing complexity, we will develop a singular value decomposition approach to parameterize non-isomorphism. Using the corrections derived from this analysis, we will correct the non-isomorphism present in multi-crystal experiments, enabling the determination of novel structures, including those collected using serial crystallography at next-generation light sources. To enable enhanced simulation for robust interpretation of experimental data, we will leverage new solvent models in macromolecular crystallography and small angle X- ray scattering. Our work will create standard protocols for comparing solvent density to alternative interpretations and to quantitatively assess how likely each simulated situation is compared to the real macromolecular crystallography or SAXS data. In addition to distinguishing between different interpretations of the experimental data, improving solvent models will enhance understanding of how macromolecules influence and interact with other molecules near their surface. Collectively, we expect the benefits of eliminating these critical systematic errors be transformative to both methods development and functional studies.
项目总结/摘要 大分子晶体学中的数据收集易受重大系统误差的影响, 在许多系统上的成功数据收集,并最终限制了结果结构的准确性。创建 可以解释这些错误的仿真技术将在三个方面产生重大影响:1)解决 新的结构,更好地占辐射损伤,这是负责80%的失败异常 相位尝试,2)通过模拟非同构来改进多晶体平均,这将打开 通往任意增益的信号噪声,3)歧视激烈争议的替代解释,如 作为结合配体的存在或不存在,通过创建模拟与更现实的溶剂模型。到 为了从同步加速器获得“无损伤数据”,我们将首先校准辐射损伤曲线, 模型和DBP样本。利用这些曲线,我们将把辐射损伤的真实3D模型, 非长方体晶体(RADDOSE 3D)到我们的衍射图像模拟器(MLFSOM),以产生3D剂量 沿晶体沿着分布和照明贴图。这将导致新一代的波长- 晶体的相关吸收因子,以补充现有的吸收校正。在光束线处, 我们将使用锥形束在线X射线吸收射线照相术测量晶体的3D图, 的光束轮廓。这些进步将使我们能够在开放的环境中生成零剂量外推值。 格式,占实验晶体和光束的几何形状。为了改善多晶体平均,我们将 开始通过表征非同构如何作为湿度、辐射损伤和 功能状态通过更新经典的“克里克和马格努什”模拟的非同构与增加 复杂性,我们将开发一个奇异值分解方法参数非同构。使用 从这个分析得出的修正,我们将纠正非同构存在于多晶体 实验,能够确定新的结构,包括那些收集使用串行 下一代光源的晶体学。为了增强模拟,以便对 实验数据,我们将利用新的溶剂模型在大分子晶体学和小角度X- 射线散射我们的工作将创建标准协议,用于比较溶剂密度和替代品 解释,并定量评估每个模拟情况与真实的相比的可能性 大分子晶体学或SAXS数据。除了区分不同的解释, 实验数据,改善溶剂模型将提高理解如何大分子影响 并与其表面附近的其他分子相互作用。总的来说,我们希望消除这些障碍 关键的系统错误对方法发展和功能研究都是变革性的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James M Holton其他文献

James M Holton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James M Holton', 18)}}的其他基金

Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
  • 批准号:
    10162611
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统错误
  • 批准号:
    9365573
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
  • 批准号:
    10710387
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Flexible Macromolecular Crystallography
柔性高分子晶体学
  • 批准号:
    10506287
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Flexible Macromolecular Crystallography
柔性高分子晶体学
  • 批准号:
    10708036
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Specialized Macromolecular Crystallography
专业高分子晶体学
  • 批准号:
    10201650
  • 财政年份:
    2017
  • 资助金额:
    $ 4.06万
  • 项目类别:
Specialized Macromolecular Crystallography
专业高分子晶体学
  • 批准号:
    9370116
  • 财政年份:
  • 资助金额:
    $ 4.06万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了