Innovative Statistical Analysis for Genome-Wide Data with General Interval-Censored Outcomes of Oral Health in Childhood Cancer Survivors

对全基因组数据的创新统计分析以及儿童癌症幸存者口腔健康的一般区间审查结果

基本信息

  • 批准号:
    10532639
  • 负责人:
  • 金额:
    $ 16.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract This application will study the oral sequelae in childhood cancer survivors from the St. Jude Life cohort and Childhood Cancer Survivor Study cohort. Both disease onset and onset time were collected, but current analyses fail to analyze the disease onset time due to high rate of missing data. DNA samples were collected and sequenced but not analyzed either. We propose innovative ways to analyze the disease onset time in the presence of missing data by considering some onset time as interval-censored, and propose new methods for analyzing interval-censored outcomes with ultrahigh-dimensional genetic covariates. We will perform both single variant-based and rare variant aggregation-based analysis for the whole genome sequencing data. We aim to estimate oral disease dynamics and associated risk factors including environmental factors, genetic factors, and their interaction. Specifically, the aims are: 1). Develop nonparametric and semiparametric screening methods for ultrahigh-dimensional data with interval-censored outcomes; 2). Develop a penalized regression method for data with reduced dimensionality from Aim 1; 3). Apply the methods developed in Aim 1 and Aim 2 to the SJLIFE and CCSS data. We will develop and share multiple user-friendly R codes associated with the new methods. The main objective of the proposed research is to employ the existing methods and develop new statistical procedures to perform appropriate analysis on the whole-genome and oral health data for a deeper understanding of the genetic architecture of tooth development and disease.
项目总结/文摘

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum likelihood estimation for the proportional odds model with mixed interval-censored failure time data.
  • DOI:
    10.1080/02664763.2020.1789077
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Zhu L;Tong X;Cai D;Li Y;Sun R;Srivastava DK;Hudson MM
  • 通讯作者:
    Hudson MM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yimei Li其他文献

Yimei Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yimei Li', 18)}}的其他基金

Biostatics
生物静力学
  • 批准号:
    10017941
  • 财政年份:
    2017
  • 资助金额:
    $ 16.23万
  • 项目类别:
Biostatics
生物静力学
  • 批准号:
    10265477
  • 财政年份:
    2017
  • 资助金额:
    $ 16.23万
  • 项目类别:

相似海外基金

CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
  • 批准号:
    2311292
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Continuing Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Standard Grant
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
DATA ANALYTICS, STATISTICAL AND BIOINFORMATIC ANALYSIS AND TOOL DEVELOPMENT, Genome wide association studies (GWAS)
数据分析、统计和生物信息分析及工具开发、全基因组关联研究 (GWAS)
  • 批准号:
    10976182
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
Statistical analysis of Japanese texts with application of analysis technique used in high energy physics
应用高能物理分析技术对日语文本进行统计分析
  • 批准号:
    23K17512
  • 财政年份:
    2023
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了