Regulation of UPRmt activation in the development of pulmonary vascular remodeling in PAH
UPRmt 激活在 PAH 肺血管重塑发展中的调节
基本信息
- 批准号:10508601
- 负责人:
- 金额:$ 11.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisBlood VesselsCaenorhabditis elegansCell HypoxiaCell ProliferationCell SurvivalCell physiologyCellsCessation of lifeDevelopmentEndothelial CellsEndotheliumGoalsHumanHypoxiaImpairmentInterventionKnowledgeLaboratoriesLeadLongevityLungLung diseasesMediatingMediator of activation proteinMitochondriaMolecularOuter Mitochondrial MembranePathogenesisPathologicPathway interactionsPatientsPharmacologic SubstancePhenotypePhosphorylationPhosphotransferasesProcessPrognosisProgressive DiseaseProteinsPulmonary HypertensionPulmonary Vascular ResistancePulmonary artery structureQuality of lifeRegulationResearchResearch PersonnelResistanceRespirationRodentRodent ModelRoleSPHK1 enzymeSignal TransductionSmooth Muscle MyocytesSphingolipidsSphingosineTestingTherapeutic InterventionTraining ProgramsVascular remodelingVascular resistanceVasodilationWorkcancer cellcareercell motilityimprovedin vivomitochondrial dysfunctionmortalitynew therapeutic targetnovelpulmonary arterial hypertensionpulmonary artery endothelial cellpulmonary vascular cell proliferationpulmonary vascular cellspulmonary vascular remodelingresponseright ventricular failureskillssphingosine 1-phosphatetargeted treatmenttenure trackvascular abnormality
项目摘要
Project Summary/Abstract
Pulmonary Arterial Hypertension (PAH) is a severe and progressive disease with a high mortality rate of nearly
40% over 5 years. Pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs) undergo
intracellular signaling changes that promote a proliferative, apoptosis resistant phenotype that causes
occlusion of the pulmonary vasculature leading to increased resistance. There is a critical need to uncover the
mechanisms that promote vascular cell remodeling. Our long-term goal is to identify pathways or molecules to
target for therapeutic intervention in order to alleviate the vascular abnormalities that are central to PAH
development and progression. Sphk1 and sphingosine-1 phosphate are increased in the lungs and pulmonary
artery smooth muscle cells of PAH patients and in the lungs of rodent models of hypoxia mediated pulmonary
hypertension (HPH). Mitochondrial (mt) dysfunction also contributes to PAH via altered regulation of multiple
mt processes, which leads to impaired vasorelaxation and increased vascular cell proliferation. However, the
effect of the Sphk1/S1P signaling axis on mt function in the initiation or progression of PAH is not well
understood. Our preliminary studies demonstrate that S1P promotes activation of the UPRmt and regulates mt
dynamics in human PAECs and PASMCs. The specific objective of the proposed study is to determine the
role of UPRmt signaling mediators on vascular cell function. Our central hypothesis is that activation of the
Sphk1/S1P/S1PR signaling axis modulates the UPRmt pathway to promote vascular remodeling which leads to
PAH development. This hypothesis will be tested by investigating the following specific aims:
AIM 1: To investigate the role of the UPRmt in S1PRs/S1P/Sphk1 promotion of pulmonary vascular cell
proliferation and hypoxia induced PH (HPH) development. Our working hypothesis is that the Sphk1/S1P/
S1PR signaling axis modulates mitochondrial function, which is a central cause underlying the pathological
proliferation of PASMCs and PAECs to mediate PAH development.
AIM 2: To determine the effects of UPRmt inhibition on vascular remodeling and HPH development. Our
working hypothesis is that hypoxia induces activation of UPRmt in vivo resulting in vascular remodeling and
PAH.
AIM 3: Determine if coordinated signaling occurs between pulmonary vascular cells and mitochondrial
processes to regulate vascular remodeling and HPH. Our working hypothesis is that coordinated signaling
among the UPRmt, mitochondrial fission and mitochondrial respiration promote vascular remodeling.
项目概要/摘要
肺动脉高压(PAH)是一种严重的进行性疾病,死亡率高达近
5年内增长40%。肺动脉内皮细胞和平滑肌细胞(PAEC 和 PASMC)经历
细胞内信号传导的变化促进增殖、凋亡抗性表型,从而导致
肺血管闭塞导致阻力增加。迫切需要揭露
促进血管细胞重塑的机制。我们的长期目标是确定途径或分子
治疗干预的目标,以减轻 PAH 的核心血管异常
发展和进步。 Sphk1 和 sphingosine-1 磷酸盐在肺和肺中增加
PAH 患者的动脉平滑肌细胞和缺氧介导的肺啮齿动物模型的肺部
高血压(HPH)。线粒体 (mt) 功能障碍也通过改变多种机制的调节而导致 PAH
mt 过程,导致血管舒张受损和血管细胞增殖增加。然而,
Sphk1/S1P信号轴对PAH发生或进展中mt功能的影响尚不明确
明白了。我们的初步研究表明S1P促进UPRmt的激活并调节mt
人类 PAEC 和 PASMC 的动态。拟议研究的具体目标是确定
UPRmt 信号传导介质对血管细胞功能的作用。我们的中心假设是激活
Sphk1/S1P/S1PR信号轴调节UPRmt通路促进血管重塑,从而导致
多环芳烃的发展。该假设将通过调查以下具体目标来检验:
目的1:探讨UPRmt在S1PRs/S1P/Sphk1促进肺血管细胞中的作用
增殖和缺氧诱导 PH (HPH) 发展。我们的工作假设是 Sphk1/S1P/
S1PR信号轴调节线粒体功能,这是病理性的核心原因
PASMCs 和 PAECs 的增殖介导 PAH 的发展。
目标 2:确定 UPRmt 抑制对血管重塑和 HPH 发展的影响。我们的
工作假设是缺氧诱导体内 UPRmt 激活,导致血管重塑和
多环芳烃。
目标 3:确定肺血管细胞和线粒体之间是否存在协调信号传导
调节血管重塑和 HPH 的过程。我们的工作假设是协调信号
在 UPRmt 中,线粒体裂变和线粒体呼吸促进血管重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelia Denise Lockett其他文献
Angelia Denise Lockett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelia Denise Lockett', 18)}}的其他基金
Regulation of UPRmt activation in the development of pulmonary vascular remodeling in PAH
UPRmt 激活在 PAH 肺血管重塑发展中的调节
- 批准号:
10674631 - 财政年份:2022
- 资助金额:
$ 11.22万 - 项目类别:
相似海外基金
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
- 批准号:
EP/X027171/2 - 财政年份:2024
- 资助金额:
$ 11.22万 - 项目类别:
Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
- 批准号:
23K07176 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
- 批准号:
23H00551 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
- 批准号:
23H01343 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
- 批准号:
10749217 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
- 批准号:
23H01827 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
$ 11.22万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




