Development of Novel Antivirals Targeting Viral RNA Methylation
针对病毒 RNA 甲基化的新型抗病毒药物的开发
基本信息
- 批准号:10512630
- 负责人:
- 金额:$ 404.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAnimal ModelAntigen PresentationAntiviral AgentsBindingBinding SitesBiochemistryBiological AssayC-terminalCell modelCellsCommunicable DiseasesComplexCoronavirusCoronavirus InfectionsDevelopmentDockingDrug TargetingEnzymesExonucleaseExoribonucleasesFamilyGenetic TranscriptionGuanidinesGuanosine TriphosphateHeadHumanImmune EvasionImmune responseIn VitroIndustry CollaborationInnate Immune SystemInterferonsLettersLibrariesLigand BindingLinkMHC Class I GenesMessenger RNAMethylationMethyltransferaseMiddle East Respiratory Syndrome CoronavirusN-terminalNatural ImmunityNonstructural ProteinNucleotidesOpen Reading FramesPharmaceutical ChemistryPharmaceutical PreparationsProteinsProteomicsRNARNA CapsRNA methylationRoleS-AdenosylmethionineSARS coronavirusSARS-CoV-2 genomeSARS-CoV-2 infectionSeriesStructureTestingTherapeuticTranslationsViralViral ProteinsVirulenceVirusVirus DiseasesVirus ReplicationWorkadaptive immunityantiviral drug developmentbasecofactorhigh throughput screeningin vivoindustry partnerinhibitorlead optimizationloss of function mutationmRNA cappingmutantnovelpandemic diseasepoly A specific exoribonucleaseprogramsresponsescreeningsmall moleculesmall molecule inhibitorsmall molecule librariesstructural biologytargeted agentviral RNAvirology
项目摘要
PROJECT 4: DEVELOPMENT OF NOVEL ANTIVIRALS TARGETING VIRAL RNA METHYLATION
SUMMARY
Coronaviruses cap their RNA by coordinated action of two methyltransferases (MTase): Nsp14, which catalyzes
N7-guanidine methylation of GTP at the 5′ terminus of viral RNAs, and Nsp16, which forms C2′-O-methyl-
ribosyladenine at the subsequent nucleotide. By mimicking mRNA of the host cell, the resulting cap structure is
critical for immune evasion, stabilization of viral RNA and efficient translation. While loss of function mutations
in the MTase domain of Nsp14 are lethal to SARS-CoV-2, SARS-CoV strains that carry mutant Nsp16 have low
virulence, suggesting that targeting of these enzymes, either alone or in combination with other viral proteins,
has strong therapeutic potential. In this application, we propose to develop antiviral agents that target MTase
activities of Nsp14 and Nsp16. Our approach will assess the potential of RNA capping MTases as a novel target
family for development of antiviral agents. Importantly, since both enzymes are conserved across coronaviruses
known to infect humans, this approach could provide a footprint for development of pan-coronaviral acting
agents.
Inhibitors for each of the MTases will be identified using a combination of small molecule discovery approaches:
computational docking, fragment linking and merging, and high throughput screening (HTS) to identify novel
chemotypes. Enabled by the recent developments in availability of make-on-demand libraries, we propose to
use ultra-large library docking to identify candidate inhibitors. Availability of drug-like compounds in in-house
small molecule libraries will facilitate inhibitor identification through HTS. Hit compounds will be tested in a series
of activity assays and validated using direct binding strategies. Experimentally determined structures of MTases
in complex with small molecule inhibitors will be used to guide optimization, aided by access to make-on-demand
libraries. The identified inhibitors will be prioritized based on their selectivity against a comprehensive panel of
human MTases and antiviral activity in cellular models of SARS-CoV-2 infection. The subsequent medicinal
chemistry optimization and assessment of antiviral activity in animal models is expected to result in Optimized
Lead compounds, which will be further elaborated by our industry partners (Roche).
项目4:开发针对病毒RNA甲基化的新型抗病毒药物
摘要
冠状病毒通过两个甲基转移酶(MTase):Nsp14的协调作用来限制它们的RNA,Nsp14催化
病毒RNA 5‘端GTP的N7-胍甲基化,以及形成C2’-O-甲基的Nsp16。
核糖腺嘌呤位于随后的核苷酸。通过模仿宿主细胞的信使核糖核酸,得到的帽子结构是
对于免疫逃避、稳定病毒RNA和高效翻译至关重要。而功能突变的丢失
在Nsp14的MTase结构域对SARS-CoV-2致死,携带突变Nsp16的SARS-CoV毒株具有低的
毒力,这表明靶向这些酶,无论是单独的还是与其他病毒蛋白结合,
有很强的治疗潜力。在这项应用中,我们建议开发针对MTase的抗病毒药物
Nsp14和Nsp16的活动。我们的方法将评估RNA封端MTase作为一个新靶点的潜力
开发抗病毒药物的家庭。重要的是,因为这两种酶在冠状病毒中都是保守的
已知会感染人类,这种方法可能为泛冠状病毒作用的发展提供足迹
探员们。
每种MTase的抑制剂将使用小分子发现方法的组合来确定:
计算对接、片段链接和合并以及高通量筛选(HTS),以识别新的
化学类型。考虑到按需制作图书馆的最新发展,我们建议
使用超大型文库对接来确定候选抑制剂。药物类化合物在内部的供应情况
小分子文库将有助于通过高温超导鉴定缓蚀剂。热门化合物将进行一系列测试
活性分析,并使用直接结合策略进行验证。实验确定的MTase的结构
在含有小分子抑制剂的复合体中将用于指导优化,辅以获得按需制造
图书馆。已确定的抑制剂将根据其相对于一个综合小组的选择性进行优先排序
SARS-CoV-2感染细胞模型中的人MTase和抗病毒活性。后来的药物
在动物模型中的化学优化和抗病毒活性的评估有望导致优化
先导化合物,这将由我们的行业合作伙伴(罗氏)进一步阐述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danica Galonic Fujimori其他文献
Danica Galonic Fujimori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danica Galonic Fujimori', 18)}}的其他基金
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
- 批准号:
10228618 - 财政年份:2018
- 资助金额:
$ 404.9万 - 项目类别:
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
- 批准号:
10736491 - 财政年份:2018
- 资助金额:
$ 404.9万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9330881 - 财政年份:2015
- 资助金额:
$ 404.9万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9037534 - 财政年份:2015
- 资助金额:
$ 404.9万 - 项目类别:
SYNTHESIS OF SMALL MOLECULES TO PROBE ENZYMATIC FUNCTION
合成小分子来探测酶功能
- 批准号:
8363795 - 财政年份:2011
- 资助金额:
$ 404.9万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 404.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




