Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
基本信息
- 批准号:10228618
- 负责人:
- 金额:$ 44.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-05-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsClinicClinicalCollaborationsDefectDevelopmentDirected Molecular EvolutionDominant-Negative MutationEnzymesEvolutionFamilyGeneticGenetic TranscriptionHealthHumanHypermethylationImpairmentInfectionInfection preventionInstitutesKnowledgeLaboratoriesMethylationMicrobeModificationMolecularMulti-Drug ResistanceMutationNucleotidesOxazolidinonesPeptidyltransferasePhenotypePhysiologicalPositioning AttributePredispositionProkaryotic CellsProtein BiosynthesisRNA, Ribosomal, 23SRegulationResistanceResistance developmentRibosomal RNARibosomesRoleSiteStreptograminsTestingTranslation ProcessTranslational RegulationTranslationsTreatment FailureVancomycin resistant enterococcusVariantWorkantibiotic resistant infectionsbacterial fitnessdiagnostic platformdrug resistant pathogenexperimental studyfitnessimprovedlincosamidemembermethicillin resistant Staphylococcus aureuspathogenpathogenic bacteriapathogenic microbepleuromutilinpreventpublic health relevanceresistance mechanismresistant strain
项目摘要
PROJECT SUMMARY
The increasing occurrence of antibiotic resistant infections is a major threat to human health, necessitating
understanding of mechanisms that confer resistance and development of strategies to counteract them.
Antibiotics that bind to the peptidyltransferase center (PTC) of the bacterial ribosome interfere with protein
synthesis in bacteria. However, some bacterial strains can modify the PTC region through mutations and post-
transcriptional modifications of ribosomal RNA (rRNA), resulting in a ribosome that can no longer bind antibiotics.
The multi-drug resistance enzyme Cfr, a member of radical SAM enzyme family, catalyzes methylation of 23S
rRNA in the PTC region. This enzyme confers resistance to a number of antibiotics, such as phenicols,
lincosamides, oxazolidinones, pleuromutilins, and streptogramin A. The ability of Cfr to confer resistance to
linezolide, an oxazolidinone antibiotic, is particularly worrisome as this antibiotic is used for the treatment of drug-
resistant pathogens including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci
(VRE). In pathogens, Cfr methylates adenosine A2503 at the C8 position. Interestingly, A2503 is also methylated
at its C2 position by RlmN, a radical SAM enzyme that is highly conserved is prokaryotes. C2 A2503 methylation
is implicated in the regulation of translational accuracy of the ribosome. A loss of physiological RlmN methylation,
both in laboratory selection experiments and in clinical settings, causes antibiotic resistance. These findings
suggest that aberrant A2503 methylation – both the absence of physiological methylation caused by inactivation
of RlmN and the hypermethylation caused by acquisition of Cfr – profoundly impacts susceptibility of the bacterial
ribosome to antibiotics.
In this application, we will investigate how aberrant methylation of A2503 in 23S rRNA impacts antibiotic
resistance and bacterial fitness. Using directed evolution and antibiotic selection, we have evolved variants of
RlmN that prevent A2503 methylation and confer resistance to tiamulin. We will determine the molecular basis
of the dominant negative effect of RlmN variants. Furthermore, we will investigate how the lack of C2 methylation
of A2503 in ribosomes confers antibiotic resistance. Cfr variants, obtained by laboratory evolution or isolated
from clinical antibiotic resistant strains, will be used to determine how changes in the sequence of this enzyme
modulate methylation of A2503 and how these changes in methylation alter antibiotic susceptibility. We will
further assess the impact of aberrant methylation on bacterial fitness and evaluate how changes in methylation
influence the regulation of translation. Our work will define how radical SAM-dependent methylation of the PTC
regulates the function of the ribosome and modulates its antibiotic susceptibility.
项目摘要
抗生素耐药感染的发生越来越多是对人类健康的主要威胁,必要
了解会议抵抗和制定战略来抵制它们的机制。
结合细菌核糖体干扰蛋白质的肽基转移酶中心(PTC)的抗生素
细菌中的合成。但是,某些细菌菌株可以通过突变和 -
核糖体RNA(RRNA)的转录修饰,导致核糖体无法再结合抗生素。
多药抗性酶CFR是自由基SAM酶家族的成员,催化23S的甲基化
PTC区域中的rRNA。这种酶赋予了对许多抗生素的抗药性,例如苯酚,
Lincosamides,黄唑啉酮,胸膜素和链霉素A. CFR对会议抗性的能力
linezolide是一种抗生素,尤其令人担忧,因为该抗生素用于治疗药物
包括耐甲氧西林的金黄色葡萄球菌(MRSA)和万古霉素抗肠球菌的抗性病原体
(vre)。在病原体中,CFR甲基化腺苷A2503处于C8位置。有趣的是,A2503也是甲基化的
在RLMN的C2位置,高度保守的自由基SAM酶是原核生物。 C2 A2503甲基化
在调节核糖体的翻译准确性中暗示。物理RLMN甲基化的损失,
在实验室选择实验和临床环境中,都会引起抗生素耐药性。这些发现
表明异常A2503甲基化 - 既没有由失活引起的物理甲基化
RLMN和由CFR获得引起的高甲基化 - 深刻影响细菌的敏感性
核糖体至抗生素。
在此应用中,我们将研究23S rRNA中A2503的异常甲基化如何影响抗生素
耐药性和细菌适应性。使用定向进化和抗生素选择,我们已经进化了变体
防止A2503甲基化和对tiamulin的会议抗性的RLMN。我们将确定分子基础
RLMN变体的主要负面影响。此外,我们将研究缺乏C2甲基化
核糖体中的A2503承认抗生素耐药性。 CFR变体,通过实验室进化或孤立获得
从临床抗生素抗性菌株中,将用于确定该酶序列的变化如何变化
调节A2503的甲基化以及甲基化的这些变化如何改变抗生素易感性。我们将
进一步评估异常甲基化对细菌适应性的影响,并评估甲基化的变化
影响翻译的调节。我们的工作将定义PTC的根治性SAM依赖性甲基化
调节核糖体的功能,并调节其抗生素易感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danica Galonic Fujimori其他文献
Danica Galonic Fujimori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danica Galonic Fujimori', 18)}}的其他基金
Development of Novel Antivirals Targeting Viral RNA Methylation
针对病毒 RNA 甲基化的新型抗病毒药物的开发
- 批准号:
10512630 - 财政年份:2022
- 资助金额:
$ 44.06万 - 项目类别:
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
- 批准号:
10736491 - 财政年份:2018
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9330881 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9037534 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
SYNTHESIS OF SMALL MOLECULES TO PROBE ENZYMATIC FUNCTION
合成小分子来探测酶功能
- 批准号:
8363795 - 财政年份:2011
- 资助金额:
$ 44.06万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
遗传变异调控选择性多聚腺苷酸化影响头颈部鳞癌发生的分子流行病学研究
- 批准号:82304236
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
The Role of m6A-RNA Methylation in Memory Formation and Recall and Its Modulation and Influence on Long-Term Outcomes as a Consequence of Early Life Lead Exposure
m6A-RNA 甲基化在记忆形成和回忆中的作用及其对早期铅暴露对长期结果的影响
- 批准号:
10658020 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
YTHDF3 as a critical regulator of cardiac function
YTHDF3 作为心脏功能的关键调节因子
- 批准号:
10676427 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别: