Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
基本信息
- 批准号:10228618
- 负责人:
- 金额:$ 44.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-05-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsClinicClinicalCollaborationsDefectDevelopmentDirected Molecular EvolutionDominant-Negative MutationEnzymesEvolutionFamilyGeneticGenetic TranscriptionHealthHumanHypermethylationImpairmentInfectionInfection preventionInstitutesKnowledgeLaboratoriesMethylationMicrobeModificationMolecularMulti-Drug ResistanceMutationNucleotidesOxazolidinonesPeptidyltransferasePhenotypePhysiologicalPositioning AttributePredispositionProkaryotic CellsProtein BiosynthesisRNA, Ribosomal, 23SRegulationResistanceResistance developmentRibosomal RNARibosomesRoleSiteStreptograminsTestingTranslation ProcessTranslational RegulationTranslationsTreatment FailureVancomycin resistant enterococcusVariantWorkantibiotic resistant infectionsbacterial fitnessdiagnostic platformdrug resistant pathogenexperimental studyfitnessimprovedlincosamidemembermethicillin resistant Staphylococcus aureuspathogenpathogenic bacteriapathogenic microbepleuromutilinpreventpublic health relevanceresistance mechanismresistant strain
项目摘要
PROJECT SUMMARY
The increasing occurrence of antibiotic resistant infections is a major threat to human health, necessitating
understanding of mechanisms that confer resistance and development of strategies to counteract them.
Antibiotics that bind to the peptidyltransferase center (PTC) of the bacterial ribosome interfere with protein
synthesis in bacteria. However, some bacterial strains can modify the PTC region through mutations and post-
transcriptional modifications of ribosomal RNA (rRNA), resulting in a ribosome that can no longer bind antibiotics.
The multi-drug resistance enzyme Cfr, a member of radical SAM enzyme family, catalyzes methylation of 23S
rRNA in the PTC region. This enzyme confers resistance to a number of antibiotics, such as phenicols,
lincosamides, oxazolidinones, pleuromutilins, and streptogramin A. The ability of Cfr to confer resistance to
linezolide, an oxazolidinone antibiotic, is particularly worrisome as this antibiotic is used for the treatment of drug-
resistant pathogens including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci
(VRE). In pathogens, Cfr methylates adenosine A2503 at the C8 position. Interestingly, A2503 is also methylated
at its C2 position by RlmN, a radical SAM enzyme that is highly conserved is prokaryotes. C2 A2503 methylation
is implicated in the regulation of translational accuracy of the ribosome. A loss of physiological RlmN methylation,
both in laboratory selection experiments and in clinical settings, causes antibiotic resistance. These findings
suggest that aberrant A2503 methylation – both the absence of physiological methylation caused by inactivation
of RlmN and the hypermethylation caused by acquisition of Cfr – profoundly impacts susceptibility of the bacterial
ribosome to antibiotics.
In this application, we will investigate how aberrant methylation of A2503 in 23S rRNA impacts antibiotic
resistance and bacterial fitness. Using directed evolution and antibiotic selection, we have evolved variants of
RlmN that prevent A2503 methylation and confer resistance to tiamulin. We will determine the molecular basis
of the dominant negative effect of RlmN variants. Furthermore, we will investigate how the lack of C2 methylation
of A2503 in ribosomes confers antibiotic resistance. Cfr variants, obtained by laboratory evolution or isolated
from clinical antibiotic resistant strains, will be used to determine how changes in the sequence of this enzyme
modulate methylation of A2503 and how these changes in methylation alter antibiotic susceptibility. We will
further assess the impact of aberrant methylation on bacterial fitness and evaluate how changes in methylation
influence the regulation of translation. Our work will define how radical SAM-dependent methylation of the PTC
regulates the function of the ribosome and modulates its antibiotic susceptibility.
项目摘要
抗生素耐药性感染的日益增加是对人类健康的主要威胁,
了解产生耐药性的机制,并制定消除耐药性的战略。
抗生素与细菌核糖体的肽基转移酶中心(PTC)结合,
在细菌中合成。然而,一些细菌菌株可以通过突变和后修饰来修饰PTC区域。
核糖体RNA(rRNA)的转录修饰,导致核糖体不再能结合抗生素。
多药耐药酶Cfr是自由基SAM酶家族成员,催化23 S甲基化
PTC区域的rRNA。这种酶赋予对许多抗生素的抗性,如酚类,
林可酰胺、恶唑烷酮、截短侧耳素和链阳性菌素A。Cfr赋予抗
利奈唑胺是一种恶唑烷酮抗生素,特别令人担忧,因为这种抗生素用于治疗药物-
包括耐甲氧西林S.金黄色葡萄球菌(MRSA)和耐万古霉素肠球菌
(VRE).在病原体中,Cfr在C8位置甲基化腺苷A2503。有趣的是,A2503也被甲基化,
在其C2位置被RlmN取代,是原核生物中高度保守的自由基SAM酶。C2 A2503甲基化
与核糖体翻译准确性的调节有关。生理RlmN甲基化的丧失,
无论是在实验室选择实验中还是在临床环境中,都会导致抗生素耐药性。这些发现
提示异常A2503甲基化--既由于失活引起的生理甲基化的缺失
RlmN和Cfr获得引起的超甲基化-深刻影响细菌的易感性,
核糖体到抗生素。
在本申请中,我们将研究23 S rRNA中A2503的异常甲基化如何影响抗生素
抗性和细菌适应性。利用定向进化和抗生素选择,我们已经进化出了
RlmN,其防止A2503甲基化并赋予对泰妙菌素的抗性。我们将确定分子基础
RlmN变体的显性负面影响。此外,我们还将研究C2甲基化的缺乏如何影响
核糖体中A2503的表达赋予抗生素抗性。Cfr变体,通过实验室进化获得或分离
从临床抗生素耐药菌株,将被用来确定如何改变这种酶的序列,
调节A2503的甲基化以及这些甲基化的变化如何改变抗生素敏感性。我们将
进一步评估异常甲基化对细菌适应性的影响,
影响翻译规范。我们的工作将确定PTC的SAM依赖性甲基化
调节核糖体的功能并调节其抗生素敏感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danica Galonic Fujimori其他文献
Danica Galonic Fujimori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danica Galonic Fujimori', 18)}}的其他基金
Development of Novel Antivirals Targeting Viral RNA Methylation
针对病毒 RNA 甲基化的新型抗病毒药物的开发
- 批准号:
10512630 - 财政年份:2022
- 资助金额:
$ 44.06万 - 项目类别:
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
- 批准号:
10736491 - 财政年份:2018
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9330881 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9037534 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
SYNTHESIS OF SMALL MOLECULES TO PROBE ENZYMATIC FUNCTION
合成小分子来探测酶功能
- 批准号:
8363795 - 财政年份:2011
- 资助金额:
$ 44.06万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 44.06万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 44.06万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




