Radical SAM-dependent methylation in antibiotic resistance

抗生素耐药性中自由基 SAM 依赖性甲基化

基本信息

项目摘要

PROJECT SUMMARY More than 40% of clinically used antibiotics act by binding to the ribosome and inhibiting protein synthesis. One of the major mechanisms of resistance to these antibiotics results from the modification of the ribosome catalyzed by Cfr, an enzyme encoded by chloramphenicol-florfenicol resistance gene. By methylating the C8 position of a conserved adenosine nucleotide in the peptidyl transferase center of the bacterial ribosome, this enzyme confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutillins, streptogramin A, hygromycin A, nucleoside analog A201A and 16-member macrolides. This broad cross-resistance is unique to Cfr, and represents a major clinical challenge, one that is further exacerbated by the presence of cfr on mobile genetic elements, low fitness cost of its acquisition and its broad geographic distribution, as well as the ability to cause resistance in both gram-positive (eg, methicillin-resistant S. aureus) and gram-negative bacteria (eg, pathogenic E. coli). Cfr family is represented by over 600 unique sequences, with some member of the family sharing only ~50% sequence identity with the commonly investigated Cfr(A) enzyme from a clinical MRSA isolate. To date, only a handful of Cfr enzymes have been functionally characterized. Recent work on the structural basis of inhibition of translation by chloramphenicol and linezolid, an oxazolidinone antibiotic, shows that both antibiotics inhibit protein synthesis by binding to the ribosome-nascent peptide complexes containing specific nascent peptide residues. Sequence-specific stalling mechanisms have been exploited in nature to regulate inducibility of antibiotic resistance genes. Since cfr is often accompanied by upstream elements that may regulate its expression, we will investigate if antibiotic-induced ribosome stalling mechanisms may be involved in regulation of the expression of cfr resistance genes. Using directed evolution under antibiotic selection, we have generated variants of Cfr with improved antibiotic resistance properties. By improving enzyme expression and stability, these enzyme variants increase ribosomal RNA methylation, leading to an increase in the proportion of the ribosomes that carry the protective modification. Improved methylation of the ribosome has enabled structural determination of the Cfr-modified ribosome, which we achieved using cryo-electron microscopy. The directed evolution mutants also provide a roadmap for our future efforts to functionally annotate additional putative members of the vast and sequence-diverse Cfr enzyme family. This will be achieved through in vitro reconstitution and in vivo validation of methylation of the conserved adenosine nucleotide. Additionally, we will deploy an innovative strategy that relies on mechanism-based crosslinking of Cfr with its substrates and next-generation sequencing of crosslinked RNAs to identify, with nucleotide resolution, the sites of RNA methylation. Together, these studies have a potential to de-orphan additional Cfr enzymes and lead to identification of new substrates and biological functions of this protein family.
项目摘要 超过40%的临床使用的抗生素通过与核糖体结合并抑制蛋白质合成而起作用。一 对这些抗生素产生耐药性的主要机制是由核糖体的修饰催化的, Cfr是氯霉素-氟苯尼考抗性基因编码的酶。通过甲基化C8位, 在细菌核糖体的肽基转移酶中心的保守腺苷核苷酸,这种酶赋予 对酚类、林可酰胺类、恶唑烷酮类、截短侧耳素、链阳性菌素A、潮霉素A的抗性, 核苷类似物A201 A和16元大环内酯。这种广泛的交叉耐药性是Cfr所独有的, 这是一个主要的临床挑战,由于在移动的遗传学上存在CFR, 元素,其获取的低适应性成本和广泛的地理分布,以及引起 革兰氏阳性(如耐甲氧西林S.金黄色葡萄球菌)和革兰氏阴性菌(例如,致病性 E.大肠杆菌)。Cfr家族由超过600个独特的序列代表,其中一些家族成员仅共享 与临床MRSA分离株中通常研究的Cfr(A)酶的序列一致性约为50%。到目前为止, 只有少数的Cfr酶被功能性地表征。 氯霉素和利奈唑胺(一种恶唑烷酮)抑制翻译的结构基础的最新研究 抗生素,表明这两种抗生素通过与核糖体新生肽结合来抑制蛋白质合成 含有特定新生肽残基的复合物。序列特异性停滞机制已经被 在自然界中用于调节抗生素抗性基因的诱导。由于cfr经常伴随着 上游元件,可能调控其表达,我们将调查是否诱导核糖体停滞 机制可能参与调节cfr抗性基因的表达。 使用抗生素选择下的定向进化,我们已经产生了具有改进的抗生素的Cfr变体, 电阻特性通过提高酶的表达和稳定性,这些酶变体增加了核糖体的 RNA甲基化,导致携带保护性修饰的核糖体比例增加。 核糖体甲基化的改善使得能够确定Cfr修饰的核糖体的结构, 我们用低温电子显微镜得到的。定向进化突变体也为我们的研究提供了路线图。 未来的努力,功能注释的其他推定成员的巨大和序列多样性的Cfr酶 家人这将通过体外重建和体内验证保守的甲基化来实现。 腺苷酸此外,我们将部署一项创新战略, Cfr与其底物的交联和交联RNA的下一代测序, 核苷酸分辨率,RNA甲基化的位点。总之,这些研究有可能去孤儿 另外的Cfr酶,并导致鉴定新的底物和该蛋白质家族的生物学功能。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
miCLIP-MaPseq Identifies Substrates of Radical SAM RNA-Methylating Enzyme Using Mechanistic Cross-Linking and Mismatch Profiling.
Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics.
  • DOI:
    10.1038/s41594-022-00723-9
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Tsai K;Stojković V;Lee DJ;Young ID;Szal T;Klepacki D;Vázquez-Laslop N;Mankin AS;Fraser JS;Fujimori DG
  • 通讯作者:
    Fujimori DG
miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.
  • DOI:
    10.1021/jacs.8b02618
  • 发表时间:
    2018-06-13
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Stojković V;Chu T;Therizols G;Weinberg DE;Fujimori DG
  • 通讯作者:
    Fujimori DG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danica Galonic Fujimori其他文献

Danica Galonic Fujimori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danica Galonic Fujimori', 18)}}的其他基金

Development of Novel Antivirals Targeting Viral RNA Methylation
针对病毒 RNA 甲基化的新型抗病毒药物的开发
  • 批准号:
    10512630
  • 财政年份:
    2022
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
  • 批准号:
    10228618
  • 财政年份:
    2018
  • 资助金额:
    $ 52.68万
  • 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
  • 批准号:
    9330881
  • 财政年份:
    2015
  • 资助金额:
    $ 52.68万
  • 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
  • 批准号:
    9037534
  • 财政年份:
    2015
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM Methytransferases
自由基 SAM 甲基转移酶
  • 批准号:
    8159594
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM Methytransferases
自由基 SAM 甲基转移酶
  • 批准号:
    8464627
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM Methytransferases
自由基 SAM 甲基转移酶
  • 批准号:
    8847634
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
SYNTHESIS OF SMALL MOLECULES TO PROBE ENZYMATIC FUNCTION
合成小分子来探测酶功能
  • 批准号:
    8363795
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM Methytransferases
自由基 SAM 甲基转移酶
  • 批准号:
    8665870
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
Radical SAM Methytransferases
自由基 SAM 甲基转移酶
  • 批准号:
    8281447
  • 财政年份:
    2011
  • 资助金额:
    $ 52.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了