Improving the robustness of neuroimaging through exploitation of variability in processing pipelines
通过利用处理流程的可变性来提高神经影像的鲁棒性
基本信息
- 批准号:10516830
- 负责人:
- 金额:$ 150.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAdoptedAdoptionAgreementArchitectureBRAIN initiativeBase of the BrainBiological MarkersBrainBrain imagingChildhoodCognitiveCollectionCommunitiesComputer softwareConsensusDataData SetDevelopmentEnsureFunctional Magnetic Resonance ImagingGoalsGraphHealthHeterogeneityIndividualLeadLiteratureMachine LearningMapsMeasuresMethodsModelingPhenotypePopulationPositioning AttributeReportingReproducibilityReproducibility of ResultsSamplingScientistSignal TransductionSiteSoftware ToolsSourceTechniquesTestingTrainingUnited States National Institutes of HealthValidationVariantWorkanalysis pipelinebasebiomarker discoveryclinically relevantcognitive developmentconnectomedata analysis pipelinedesignfitnessflexibilityimprovedmachine learning classifiermachine learning frameworkneuroimagingopen datapredictive markerpreventsegmentation algorithmsuccesstoolvector
项目摘要
ABSTRACT
Reproducible findings are essential to scientific advancement. Unfortunately, when fields lack consensus
standards for methods, or their implementations, reproducibility tends to be more of an ideal than a reality. Such
is the case for functional neuroimaging analysis, where there is a sprawling and heterogeneous analytic space
from which scientists can select tools, construct processing pipelines, and draw interpretations from their results.
Recent demonstrations of disappointing levels of reproducibility for findings across labs, even when using the
same datasets, have made the urgent need to overcome analytic heterogeneity clear. Differences in processing
steps, parameters, and their software implementation have all been shown to bias results, limiting their
comparability with one another. One solution that has emerged in the literature is the adoption of highly
prescribed pipelines, such as the fMRIPrep and HCP Pipelines. While successful in restricting variability, the
lack of ground truths or consensus processing components and parameters prevents such efforts from being a
desirable long-term solution. An alternative strategy, which our team has successfully deployed to achieve robust
results in the face of numerical instabilities, is to develop tools that ensemble results across a space of pipeline
configurations (i.e., a range of components and parameters). Based on our prior work, we predict that such a
strategy would not only improve the robustness of findings, but minimize biases arising from single pipeline
selections that compromise the success of biomarker discovery efforts. We address this challenge by proposing
a framework for characterizing, summarizing, and minimizing analytic biases in experimental findings. Building
on prior work implementing independently developed pipelines (e.g., ABCD-HCP, CCS, fMRIPrep) within a
common platform (i.e., the Configurable Pipeline for the Analysis of Connectomes; C-PAC), we will
systematically vary their components to generate a broad space of pipelines (n=192). We will quantify the
variability in full-brain functional connectivity matrices generated across configurations, and identify both the
contribution of individual components (e.g., segmentation, spatial normalization) and the relationships between
pipelines (Aim 1). We will construct robust estimates of functional connectivity by sampling the variability
observed across pipelines (Aim 2), and improve the generalizability of brain-phenotype relationships through the
extension of machine learning ensembling techniques (Aim 3). We will increase the accessibility of our approach
by sampling the pipeline configuration space to identify a minimal set of representative pipelines. The strength
of these techniques will be demonstrated by identifying generalizable brain-based biomarkers of cognitive and
psychiatric wellness using the NIH ABCD Study dataset. This project will lead a shift in neuroimaging towards
the capture and inclusion of dominant sources of variability in functional neuroimaging, and in doing so, help to
carry functional neuroimaging out of the reproducibility crisis into an era of robustness. Consistent with the values
of open science, all contributions will be made publicly and freely available.
摘要
可重复的发现对科学进步至关重要。不幸的是,当各领域缺乏共识时,
方法或其实现的标准,再现性往往是一种理想而不是现实。等
是功能性神经影像分析的情况,其中有一个蔓延和异构的分析空间
科学家可以从中选择工具,构建处理管道,并从他们的结果中得出解释。
最近的证据表明,即使使用
同样的数据集,已经使克服分析异质性的迫切需要变得清晰。处理上的差异
步骤、参数和它们的软件实现都被证明会使结果产生偏差,
彼此之间的相似性。文献中出现的一种解决方案是采用高度
规定的管道,如fMRIPrep和HCP管道。虽然成功地限制了可变性,
缺乏基本事实或一致性处理组件和参数阻止了这种努力成为一种
理想的长期解决方案。我们的团队已经成功部署了一种替代策略,
在面对数值不稳定性的结果,是开发工具,合奏结果在整个空间的管道
配置(即,一系列组件和参数)。根据我们以前的工作,我们预测,这样一个
这一战略不仅可以提高调查结果的可靠性,而且可以最大限度地减少单一渠道产生的偏差。
这些选择损害了生物标志物发现努力的成功。我们应对这一挑战的方法是,
描述、总结和最小化实验结果中的分析偏差的框架。建筑
关于实施独立开发的管道的先前工作(例如,ABCD-HCP、CCS、fMRIPrep),
公共平台(即,用于连接体分析的可配置管道; C-PAC),我们将
系统地改变它们的成分,以产生广阔的管道空间(n=192)。我们将量化
跨配置生成的全脑功能连接矩阵的可变性,并确定
单个组分的贡献(例如,分割,空间归一化)以及
管道(目标1)。我们将通过对变异性进行采样来构造函数连通性的稳健估计
观察整个管道(目标2),并通过提高大脑表型关系的普遍性,
机器学习集成技术的扩展(目标3)。我们将增加我们方法的可及性
通过对流水线配置空间进行采样以识别代表性流水线的最小集合。强度
这些技术将通过识别认知和认知功能的可推广的基于大脑的生物标志物来证明。
使用NIH ABCD研究数据集的精神健康。该项目将导致神经成像的转变,
在功能性神经成像中捕获和包含变异性的主要来源,并在这样做时,有助于
将功能性神经影像学从再现性危机带入稳健性时代。与价值观一致
在开放科学的框架内,所有的贡献都将公开和免费提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Kiar其他文献
Gregory Kiar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 150.4万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 150.4万 - 项目类别:
Fellowship
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Continuing Grant
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Research Grant
An Empirical Study on the Influence of Socioeconomic Status in Adolescence on Exercise Habits in Adulthood
青春期社会经济地位对成年期运动习惯影响的实证研究
- 批准号:
23K16734 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




