BREEZE: New Ventricular Direct Cooling Stylet to Mitigate Secondary Brain Injury
BREEZE:新型心室直接冷却管心针可减轻继发性脑损伤
基本信息
- 批准号:10528204
- 负责人:
- 金额:$ 44.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAcute Brain InjuriesAddressAffectAlgorithmsAmericanAnoxiaBiomimeticsBladderBlood CirculationBlood capillariesBrainBrain InjuriesCalciumCaliberCardiovascular systemCathetersCerebrospinal FluidCerebrumClinicalCollaborationsDangerousnessDevelopmentDevicesDrainage procedureDropsEconomic BurdenEnvironmentEnvironmental WindEpilepsyExcisionFamilyFeasibility StudiesFiber OpticsFree RadicalsFunctional disorderGasesGoalsHeadHealth Care CostsHealthcare SystemsHeart ArrestHumanInflammationInjuryInterventionIntracranial PressureIntraventricularIschemiaLaboratory AnimalsLeadLiquid substanceLungMacaca mulattaMapsMetabolismMethodsMiniaturizationModelingMonitorMorbidity - disease rateMusNeedlesNervous System PhysiologyNervous System TraumaNeuraxisNeurological outcomeOrganOutcomeOxygen ConsumptionPatient-Focused OutcomesPatientsPerfusionPersonsPhasePrimatesProductionProtein Binding DomainProteinsProtocols documentationPumpRNA BindingRecoveryRefrigerationResearchRewarmingSafetySpinal CordStatus EpilepticusStrokeSurfaceSwellingSystemTechnologyTemperatureTestingTherapeuticTimeTranslatingTraumatic Brain InjuryTraumatic Brain Injury recoveryValidationVentricularWorkbasebrain tissueclinical practicecostdesigndisabilityenthalpyexcitotoxicityimprovedinjuredmetabolic rateminiaturizemortalitynatural hypothermianegative affectneuroprotectionnonhuman primatenovelphantom modelportabilitypre-clinicalpreclinical studypreservationpublic health relevancerectalresearch studysocialvapor
项目摘要
ABSTRACT
Millions of people worldwide suffer annually from severe traumatic brain injury, stroke, status epilepticus and
anoxia after cardiac arrest. These brain insults lead to high mortality, morbidity and disability unless rapidly and
properly treated. Rapid cooling can significantly mitigate brain injuries by notably reducing swelling, inflammation,
metabolism, and oxygen consumption ultimately preserving neurological function and enhancing recovery.
Unfortunately, current hypothermic intervention requires prolonged systemic body cooling and suboptimal
rewarming. This limitation results in healthy organ dysfunction and diminishes the benefits of reduced brain
temperature. Selective brain cooling through external head refrigeration shows some promises, but cooling is
limited to the brain surface. Other proposed selective brain cooling methods rely on inconvenient, expensive,
and potentially dangerous fluid circulation systems. Therefore, an effective, safe, convenient, and affordable
device to rapidly cool the injured brain without affecting negatively other organs remains an unmet crucial clinical
need.
To address this urgent need, we conceived a novel rapid cooling device for intracranial use or as a stylet for
widely used external ventricular drain (EVD) catheters. EVD catheters are used globally to monitor and reduce
intracranial pressure (ICP) in injured patients through cerebrospinal fluid (CSF) removal. Since CSF circulates
throughout the entire central nervous system, EVD catheters are an ideal conduit for brain and spinal cord
cooling. BREEZE (Brain Rapid Enthalpy Extractor with Zero-liquid Exchange) would conveniently replace current
stylets guiding EVD catheters into ventricles. Without interfering with CSF drainage, BREEZE could induce rapid
brain cooling a novel heat pipe- and ionic wind-based design. By exploiting capillary action and vapor expansion,
the heat-pipe transfers rapidly brain heat to an ionic wind fan, which dissipates it to colder external environments.
Our long-term objective is to improve neurological outcome of brain-injured patients by translating our low-cost
groundbreaking cooling technology into clinical practice. The rationale for our approach is that by integrating
heat-pipe, thermoelectric cooling, ionic wind, and adaptive control, we can provide effective selective cerebral
cooling to mitigate acute brain injury and improve patient recovery. Our underlying hypotheses are that our
cutting-edge cooling technology can be miniaturized into an EVD-compatible stylet (H1), adaptively controlled to
a user-defined thermal profile in biomimetic phantom (H2) and in non-human primates (H3). Thus, we propose
these specific aims: (SA1) Optimize BREEZE technology into a 1.5mm dia brain cooling intracranial/ventricular
stylet; (SA2) Build an adaptive brain-cooling algorithm for BREEZE using a bio-accurate model/phantom; (SA3)
Study initial feasibility of BREEZE selective/adaptive brain cooling in five non-human primates.
The expected outcome of this project is the development and initial preclinical validation of our novel cooling
device. Rapid, effective, convenient, and selective cerebral temperature reduction with exquisite control
maximizes the neuroprotective benefits of hypothermia in reducing secondary damage for brain injury patients.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paolo Francesco Maccarini其他文献
Paolo Francesco Maccarini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paolo Francesco Maccarini', 18)}}的其他基金
Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
- 批准号:
10842926 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8758405 - 财政年份:2014
- 资助金额:
$ 44.28万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8904688 - 财政年份:2014
- 资助金额:
$ 44.28万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
9100864 - 财政年份:2014
- 资助金额:
$ 44.28万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8324550 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8189583 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Operating Grants