The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
基本信息
- 批准号:10526637
- 负责人:
- 金额:$ 20.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-25 至 2024-06-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino AcidsAnimalsBacteriaBiochemicalCellsCysteineCytosolDegradation PathwayDependenceDiseaseDrug Metabolic DetoxicationElderlyEnvironmentEnzymesEssential Amino AcidsEukaryotic CellGene ExpressionGene Expression ProfileGene SilencingGenesGeneticGenetic ScreeningGenetic TranscriptionGenomeGlutathioneGlutathione Metabolism PathwayGram-Positive BacteriaGrowthHuman DevelopmentImmunocompromised HostIn VitroIndividualInfectionKnowledgeListeria monocytogenesMaintenanceMetabolicMetabolic PathwayMetabolismModelingMusNatureNewborn InfantOralOrganismOxidation-ReductionPathogenesisPathogenicityPathway interactionsPeptidesPhysiologicalPregnant WomenProteinsRegulationResearchRoleSignal TransductionSourceTestingTherapeutic InterventionToxic effectUnited StatesVirulenceVirulence FactorsVirulentcysteinylglycineextracellularfoodbornefoodborne illnessfoodborne infectionfoodborne pathogenmouse modelnovelnovel therapeuticspathogenpathogenic bacteriaresponsetranscription factortransposon sequencinguptake
项目摘要
ABSTRACT
Listeria monocytogenes is a low G+C Gram-positive bacterium that can cause severe disease in
immunocompromised individuals, pregnant women, newborns, and the elderly. Pathogenic listerial strains use
a master transcriptional regulator, PrfA, to induce its most important virulence genes. In turn, the PrfA protein is
directly activated by glutathione, a cysteine-containing tripeptide, which also performs important antioxidation
and detoxification functions in bacterial and eukaryotic cells.
To reach the intracellular level of glutathione required for sufficient PrfA activation and virulence gene
expression during infection, the listerial cells need either to synthesize glutathione or import it from the cytosol
of host cells, which is rich in glutathione. Surprisingly, listerial glutathione synthesis appears to contribute more
strongly to virulence than its uptake from the eukaryotic cytosol. Glutathione uptake pathways have been
identified only in several bacterial species; the L. monocytogenes glutathione importer(s) and the reasons for
their apparent low activity during infection are not known.
To synthesize glutathione and just to grow, L. monocytogenes cells must obtain cysteine, an essential
amino acid, or a related compound from the environment. Interestingly, listerial cells can convert efficiently
exogeneous glutathione to cysteine. This glutathione degradation, depending on the yet unknown extracellular
or intracellular localization of this pathway, can reduce the metabolite level in bacterial or host cells or both.
Therefore, a tight regulation of glutathione degradation may be a critical step in listerial virulence during
infection. The glutathione-to-cysteine degradation pathway in L. monocytogenes has not been identified, and
none of the genes encoding known enzymes of glutathione cleavage are present in the listerial genome. Thus,
a novel enzyme of glutathione degradation with an unknown cellular localization is present in listerial cells.
The complete lack of information on the nature of the glutathione uptake and degradation pathways,
their regulation, and contributions to the glutathione level and PrfA activation impedes our understanding of
how virulence genes are induced under various conditions of listerial growth. We propose to fill this important
gap in our knowledge and determine the L. monocytogenes genes that are involved in the uptake and
degradation of glutathione. Expression patterns of these genes under various growth conditions will be
determined. The impact of the corresponding pathways on the glutathione listerial pool, expression of PrfA-
dependent virulence genes, and virulence in a mouse model of infection will be major targets of our research.
L. monocytogenes is one of the deadliest foodborne pathogens in the United States. This project will
allow us to identify metabolic steps required for the accumulation of glutathione at levels that are needed for
listerial virulence. In doing so, we may uncover novel pathways for potential therapeutic intervention. Similar
pathways are likely to exist in other pathogenic bacteria.
抽象的
单核细胞增生李斯特菌是一种低的G+C革兰氏阳性细菌,可能导致严重的疾病
免疫功能低下的人,孕妇,新生儿和老年人。病原裂菌株的使用
主要的转录调节剂PRFA诱导其最重要的毒力基因。反过来,PRFA蛋白是
直接被含有半胱氨酸的三肽谷胱甘肽直接激活,也执行重要的抗氧化
和排毒功能在细菌和真核细胞中。
要达到足够PRFA激活和毒力基因所需的细胞内谷胱甘肽水平
感染期间的表达,李斯特细胞需要合成谷胱甘肽或从细胞质中导入它
宿主细胞,富含谷胱甘肽。令人惊讶的是,李斯特氏谷胱甘肽合成似乎有助于更多
强烈的毒力比其来自真核细胞质的摄取。谷胱甘肽的吸收途径已经
仅在几种细菌物种中鉴定; L.单核细胞增生谷胱甘肽进口商(S)和原因
它们在感染期间的表观低活动尚不清楚。
要合成谷胱甘肽并仅生长,单核细胞增生李斯特菌细胞必须获得半胱氨酸,这是必不可少的
氨基酸或来自环境的相关化合物。有趣的是,锂细胞可以有效地转换
外止的谷胱甘肽到半胱氨酸。这种谷胱甘肽降解,具体取决于尚未知道的细胞外
或该途径的细胞内定位,可以降低细菌或宿主细胞中的代谢物水平,或两者兼而有之。
因此,严格调节谷胱甘肽降解可能是李斯特式毒力的关键步骤
感染。尚未鉴定出单核细胞增生李斯特氏菌中的谷胱甘肽到半胱氨酸降解途径,并且
李斯特氏基因组中没有一个编码已知谷胱甘肽裂解酶的基因。因此,
李斯特氏细胞中存在一种具有未知细胞定位的谷胱甘肽降解的新型酶。
完全缺乏有关谷胱甘肽摄取和降解途径性质的信息,
它们的监管以及对谷胱甘肽水平和PRFA激活的贡献阻碍了我们对
在层裂生长的各种条件下,如何诱导毒力基因。我们建议填补这个重要的
在我们的知识上差距,并确定参与吸收和涉及的单核细胞增生基因基因
谷胱甘肽的降解。这些基因在各种生长条件下的表达模式将是
决定。相应途径对谷胱甘肽层池的影响,prfa-的表达
依赖性的毒力基因以及感染小鼠模型中的毒力将是我们研究的主要靶标。
单核细胞增生李斯特氏菌是美国最致命的食源性病原体之一。这个项目将
允许我们确定谷胱甘肽在所需的水平上积累所需的代谢步骤
李斯特式毒力。这样,我们可能会发现潜在治疗干预的新途径。相似的
途径可能存在于其他致病细菌中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BORIS R BELITSKY其他文献
BORIS R BELITSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BORIS R BELITSKY', 18)}}的其他基金
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10624376 - 财政年份:2022
- 资助金额:
$ 20.63万 - 项目类别:
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10511069 - 财政年份:2022
- 资助金额:
$ 20.63万 - 项目类别:
The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
- 批准号:
10671070 - 财政年份:2022
- 资助金额:
$ 20.63万 - 项目类别:
Identification of the full scope of the CodY regulon in Clostridioides difficile
艰难梭菌中 CodY 调节子的完整范围鉴定
- 批准号:
10318205 - 财政年份:2020
- 资助金额:
$ 20.63万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7526791 - 财政年份:1986
- 资助金额:
$ 20.63万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7906072 - 财政年份:1986
- 资助金额:
$ 20.63万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7663981 - 财政年份:1986
- 资助金额:
$ 20.63万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
8119688 - 财政年份:1986
- 资助金额:
$ 20.63万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关键非催化氨基酸残基影响新型GH43家族双功能酶底物特异性的机制研究
- 批准号:32301052
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别: