Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
基本信息
- 批准号:10624376
- 负责人:
- 金额:$ 8.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-18 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAnaerobic BacteriaAntibiotic ResistanceAntibioticsBacteriaBindingCRISPR interferenceCell WallCellsClinicClinicalClinical ResearchClostridiumClostridium difficileDevelopmentDiseaseEnvironmentEnzymesGene ExpressionGene Expression RegulationGenesGenetic TranscriptionHumanIndividualInfectionKnowledgeLaboratoriesLinkLipidsMetabolic PathwayMetabolismMutationNamesOperonPathway interactionsPeptidoglycanPharmaceutical PreparationsPhosphorylationPhosphotransferasesPredispositionProkaryotic CellsPseudomembranous ColitisRegulationRegulatory ElementRegulonRelaxationRepressionReproduction sporesResistanceResistance developmentRoleSignal PathwaySignal TransductionSpecificitySystemVancomycinVancomycin Resistanceanalogantibiotic-associated diarrheaantimicrobialcell growthconstitutive expressiondesigndifferential expressionemerging pathogenmutantnovelnull mutationpathogenpathogenic bacteriapreventprotein-histidine kinaseramoplaninresistant strainresponsetranscriptome sequencing
项目摘要
ABSTRACT
Clostridioides difficile is a spore-forming, anaerobic bacterium that can cause severe disease, including
antibiotic-associated diarrhea and pseudomembranous colitis, in humans. Vancomycin is a first-line drug for
treating C. difficile infection; it targets peptidoglycan biosynthesis, a pathway specific for prokaryotic cells and
essential for the formation of the bacterial cell wall and growth. Vancomycin binds to the D-Ala-D-Ala residues
of the peptidoglycan intermediates and prevents their incorporation into mature peptidoglycan.
The C. difficile vanG operon, analogs of which confer vancomycin resistance in other bacterial species
due to the replacement of the D-Ala-D-Ala moiety of peptidoglycan with D-Ala-D-Ser, is positively regulated by
a two-component system, VanRS. Uniquely, neither vancomycin-induced nor high, constitutive expression of
the vanG operon confers by itself resistance to vancomycin in C. difficile. Nevertheless, many clinical and
laboratory-generated vancomycin-resistant C. difficile strains contain vanRS mutations that increase vanG
expression, strongly suggesting that high expression of the operon contributes, together with other mutations,
to the development of the resistance.
We have found that in the absence of the C. difficile vancomycin-sensing histidine kinase, VanS,
another histidine kinase, not yet genetically identified and provisionally named as KinX, also responds to
vancomycin and is able to replace VanS and induce the vanG operon. A regulated histidine kinase crosstalk in
response to the same environmental signal, in this case vancomycin, is unusual. In contrast to VanS, KinX also
responds to at least one more antibiotic that interferes with peptidoglycan synthesis. Therefore, it is critically
important to understand in detail the function of KinX, which is activated in response to a clinically used
antibiotic, may contribute to the emerging resistance of C. difficile to vancomycin via the regulation of the vanG
operon, and is very likely to regulate additional genes that are involved in peptidoglycan metabolism.
Using several independent unbiased or targeted approaches, including RNA-Seq and CRISPRi, we
propose to identify the novel histidine kinase, KinX, and, likely, its cognate response regulator that control
expression of genes of peptidoglycan biosynthesis. Using gene-specific and global expression analyses, we
will determine the contribution of KinX to the regulation of the vanG operon and define the KinX regulon. Our
results will shed new light on peptidoglycan biosynthesis and mechanisms of vancomycin sensitivity and
resistance in C. difficile.
Vancomycin-resistant strains are commonly detected in the clinic, and the spread of the resistance may
become a serious issue in treating C. difficile infection. Detailed knowledge on the regulation of the vanG
operon and other genes of peptidoglycan metabolism is critical for understanding the development of
vancomycin resistance and designing new antimicrobials that target peptidoglycan.
抽象的
梭状芽胞杆菌艰难梭菌是一种形成孢子的厌氧细菌,可能引起严重疾病,包括
人类中与抗生素相关的腹泻和假膜结肠炎。万古霉素是一线药物
治疗艰难梭菌感染;它靶向肽聚糖的生物合成,这是一种针对原核细胞和
细菌细胞壁和生长的形成至关重要。万古霉素与d-ala-d-ala残基结合
肽聚糖中间体的中间体,并防止其掺入成熟的肽聚糖中。
艰难梭菌vang操纵子,类似物的类似物在其他细菌中赋予万古霉素耐药性
由于用d-ala-d-ser替换了肽聚糖的D-Ala-d-ala部分,因此受到正面调节
两个组件系统VANRS。独特的是,万古霉素诱导的也不是高的构成表达
vang操纵子本身赋予了艰难梭菌中对万古霉素的抵抗。然而,许多临床和
实验室生成的万古霉素耐药性艰难梭菌菌株包含增加Vang的VANR突变
表达,强烈表明操纵子的高表达与其他突变一起贡献
抗药性的发展。
我们发现,在缺乏艰难梭菌万古霉素的组氨酸激酶,VANS,VANS,
另一个尚未鉴定出遗传鉴定和临时命名为kinx的组氨酸激酶也对
万古霉素能够取代货车并诱导vang操纵子。一个受调节的组氨酸激酶串扰
对同一环境信号的响应,在这种情况下,万古霉素是不寻常的。与货车相反,kinx也
对至少一种干扰肽聚糖合成的抗生素反应。因此,这是批判性的
重要的是要详细了解KINX的功能,该功能是根据临床使用的
抗生素可能通过调节Vang的调节导致艰难梭菌对万古霉素的新兴耐药性
操纵子,很可能会调节与肽聚糖代谢有关的其他基因。
使用几种独立的公正或有针对性的方法,包括RNA-Seq和Crispri,我们
建议识别新型的组氨酸激酶,kinx,及其可能控制的同源响应调节剂
肽聚糖生物合成基因的表达。使用基因特异性和全局表达分析,我们
将确定Kinx对Vang Operon调节的贡献,并定义Kinx调节。我们的
结果将为肽聚糖生物合成和万古霉素敏感性的机制提供新的启示
艰难梭菌的阻力。
在诊所中通常检测到万古霉素抗性菌株,耐药性的传播可能
成为治疗艰难梭菌感染的严重问题。关于调节的详细知识
肽聚糖代谢的操纵子和其他基因对于理解的发展至关重要
万古霉素的耐药性和设计针对肽聚糖的新抗菌剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BORIS R BELITSKY其他文献
BORIS R BELITSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BORIS R BELITSKY', 18)}}的其他基金
The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
- 批准号:
10526637 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10511069 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
- 批准号:
10671070 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Identification of the full scope of the CodY regulon in Clostridioides difficile
艰难梭菌中 CodY 调节子的完整范围鉴定
- 批准号:
10318205 - 财政年份:2020
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7526791 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7906072 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7663981 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
8119688 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:82204251
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
微氧环境下兼性厌氧菌和产甲烷菌降解长链脂肪酸的协同机制
- 批准号:52170037
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控
- 批准号:52070037
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10511069 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10280369 - 财政年份:2021
- 资助金额:
$ 8.25万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10457395 - 财政年份:2021
- 资助金额:
$ 8.25万 - 项目类别:
High Throughput Screening for Non-antibiotic inhibitors of Clostridium difficile Pathophysiology
高通量筛选艰难梭菌病理生理学的非抗生素抑制剂
- 批准号:
10335182 - 财政年份:2019
- 资助金额:
$ 8.25万 - 项目类别: