Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
基本信息
- 批准号:10511069
- 负责人:
- 金额:$ 8.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-18 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAnaerobic BacteriaAntibiotic ResistanceAntibioticsBacteriaBindingCRISPR interferenceCell WallCellsCenters for Disease Control and Prevention (U.S.)ClinicClinicalClinical ResearchClostridium difficileDevelopmentDiseaseEnvironmentEnzymesGene ExpressionGene Expression RegulationGenesGenetic TranscriptionHumanIndividualInfectionKnowledgeLaboratoriesLightLinkLipidsMetabolic PathwayMetabolismMutationNamesOperonPathway interactionsPeptidoglycanPharmaceutical PreparationsPhosphotransferasesPredispositionProkaryotic CellsPseudomembranous ColitisRegulationRegulatory ElementRegulonReproduction sporesResistanceResistance developmentRoleSignal PathwaySignal TransductionSpecificitySystemVancomycinVancomycin Resistanceanalogantibiotic-associated diarrheaantimicrobialcell growthdesigndifferential expressionemerging pathogenmutantnovelnull mutationpathogenpathogenic bacteriapreventprotein-histidine kinaseramoplaninresistant strainresponsetranscriptome sequencing
项目摘要
ABSTRACT
Clostridioides difficile is a spore-forming, anaerobic bacterium that can cause severe disease, including
antibiotic-associated diarrhea and pseudomembranous colitis, in humans. Vancomycin is a first-line drug for
treating C. difficile infection; it targets peptidoglycan biosynthesis, a pathway specific for prokaryotic cells and
essential for the formation of the bacterial cell wall and growth. Vancomycin binds to the D-Ala-D-Ala residues
of the peptidoglycan intermediates and prevents their incorporation into mature peptidoglycan.
The C. difficile vanG operon, analogs of which confer vancomycin resistance in other bacterial species
due to the replacement of the D-Ala-D-Ala moiety of peptidoglycan with D-Ala-D-Ser, is positively regulated by
a two-component system, VanRS. Uniquely, neither vancomycin-induced nor high, constitutive expression of
the vanG operon confers by itself resistance to vancomycin in C. difficile. Nevertheless, many clinical and
laboratory-generated vancomycin-resistant C. difficile strains contain vanRS mutations that increase vanG
expression, strongly suggesting that high expression of the operon contributes, together with other mutations,
to the development of the resistance.
We have found that in the absence of the C. difficile vancomycin-sensing histidine kinase, VanS,
another histidine kinase, not yet genetically identified and provisionally named as KinX, also responds to
vancomycin and is able to replace VanS and induce the vanG operon. A regulated histidine kinase crosstalk in
response to the same environmental signal, in this case vancomycin, is unusual. In contrast to VanS, KinX also
responds to at least one more antibiotic that interferes with peptidoglycan synthesis. Therefore, it is critically
important to understand in detail the function of KinX, which is activated in response to a clinically used
antibiotic, may contribute to the emerging resistance of C. difficile to vancomycin via the regulation of the vanG
operon, and is very likely to regulate additional genes that are involved in peptidoglycan metabolism.
Using several independent unbiased or targeted approaches, including RNA-Seq and CRISPRi, we
propose to identify the novel histidine kinase, KinX, and, likely, its cognate response regulator that control
expression of genes of peptidoglycan biosynthesis. Using gene-specific and global expression analyses, we
will determine the contribution of KinX to the regulation of the vanG operon and define the KinX regulon. Our
results will shed new light on peptidoglycan biosynthesis and mechanisms of vancomycin sensitivity and
resistance in C. difficile.
Vancomycin-resistant strains are commonly detected in the clinic, and the spread of the resistance may
become a serious issue in treating C. difficile infection. Detailed knowledge on the regulation of the vanG
operon and other genes of peptidoglycan metabolism is critical for understanding the development of
vancomycin resistance and designing new antimicrobials that target peptidoglycan.
摘要
艰难梭菌是一种能形成孢子的厌氧细菌,可引起严重疾病,包括
人类腹泻和伪膜性结肠炎。万古霉素是一线药物
治疗C.艰难感染;它针对肽聚糖生物合成,这是原核细胞特异性的途径,
对细菌细胞壁的形成和生长至关重要。万古霉素与D-Ala-D-Ala残基结合
并阻止其掺入成熟肽聚糖。
梭艰难梭菌旺操纵子,其类似物在其他细菌物种中赋予万古霉素抗性
由于肽聚糖的D-Ala-D-Ala部分被D-Ala-D-Ser取代,
双组分系统VanRS。独特的是,万古霉素既不诱导也不高,组成型表达,
旺操纵子本身赋予C.很难尽管如此,许多临床和
实验室产生万古霉素抗性C.艰难梭菌菌株含有vanRS突变,
表达,强烈表明操纵子的高表达与其他突变一起,
抵抗运动的发展
我们发现,在C.艰难梭菌万古霉素敏感组氨酸激酶,VanS,
另一种组氨酸激酶,尚未遗传鉴定,暂时命名为KinX,也响应于
万古霉素,并能够取代VanS和诱导旺操纵子。一种受调节的组氨酸激酶串扰,
对相同环境信号的反应,在这种情况下万古霉素是不寻常的。与VanS相比,KinX还
对至少一种干扰肽聚糖合成的抗生素有反应。因此,它批判地
重要的是要详细了解KinX的功能,它是响应于临床使用的
抗生素,可能有助于C.通过调节旺,
操纵子,并且很可能调节参与肽聚糖代谢的其他基因。
使用几种独立的无偏或靶向方法,包括RNA-Seq和CRISPRi,我们
我建议确定新的组氨酸激酶,KinX,并可能,其同源反应调节器,控制
肽聚糖生物合成基因的表达。使用基因特异性和全局表达分析,我们
将确定KinX对旺操纵子的调节的贡献并定义KinX调节子。我们
结果将为肽聚糖生物合成和万古霉素敏感性机制提供新的线索,
C.抗性很难
万古霉素耐药菌株在临床上是常见的,耐药的传播可能会导致耐药菌株的感染。
成为治疗C.艰难感染关于旺调节的详细知识
操纵子和肽聚糖代谢的其他基因对于理解
万古霉素耐药性和设计靶向肽聚糖的新抗菌剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BORIS R BELITSKY其他文献
BORIS R BELITSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BORIS R BELITSKY', 18)}}的其他基金
The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
- 批准号:
10526637 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10624376 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
The roles of glutathione metabolism in growth and virulence of Listeria monocytogenes
谷胱甘肽代谢在单核细胞增生李斯特菌生长和毒力中的作用
- 批准号:
10671070 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Identification of the full scope of the CodY regulon in Clostridioides difficile
艰难梭菌中 CodY 调节子的完整范围鉴定
- 批准号:
10318205 - 财政年份:2020
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7526791 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7663981 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
7906072 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of glutamate synthesis in Bacillus subtilis
枯草芽孢杆菌谷氨酸合成的调控
- 批准号:
8119688 - 财政年份:1986
- 资助金额:
$ 8.25万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Discovery Grants Program - Individual
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
University Undergraduate Student Research Awards
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 8.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 8.25万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 8.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 8.25万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 8.25万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 8.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 8.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)