Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas

细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱

基本信息

  • 批准号:
    10527519
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project summary The extracellular matrix (ECM) is a complex meshwork of hundreds of proteins that constitute the scaffold that holds our cells together. However, the functions of the ECM extend far beyond its structural roles. ECM proteins provide biochemical signals, either directly, by binding to cell surface receptors, or indirectly, by modulating growth factor signaling, that regulate many essential pathways controlling cellular functions, from proliferation and survival to migration and differentiation, all key to tissue and organ functions. Alteration of the ECM is linked to many diseases, including congenital diseases (e.g., Marfan syndrome, Alport syndrome, Ehlers–Danlos syndrome), musculo-skeletal diseases (e.g., osteoarthritis, myopathies), cardiovascular diseases, fibrosis, and cancer. Yet, despite its importance, the ECM remains largely underexplored. For example, we have yet to decipher the ECM protein composition (or “matrisome”) of organs, of tissues, and, within tissues, of specialized niches. We also do not fully understand which cell types produced which ECM proteins, nor do we know how the composition of the ECM changes over time and during diseases. These gaps in knowledge are mainly due to the lack of adequate methods to study the ECM. The secretion and post-translational modifications that accumulate in the ECM over time are critical for proper ECM functions and cannot be fully studied by RNA-level observations only. Thus, protein-level evidence is key to understand the function and dynamics of the ECM. However, ECM proteins, being typically very large, heavily post-translationally modified, and, overall, highly insoluble, are under-represented in global proteomic datasets. We propose to fill these gaps in knowledge by contributing our expertise in ECM biology, ECM proteomics, and computational biology to the technology- development and mapping efforts of the Human BioMolecular Atlas Program (HuBMAP), and ultimately build spatially-resolved maps of the matrisome of all organs. To achieve this goal, we will pursue the following aims: 1) re-analyze the vast amount of single-cell RNA-seq data generated by HuBMAP to identify the cell populations expressing ECM and ECM receptor gene transcripts for all organs, 2) integrate existing imaging data and mass spectrometry data generated by the HuBMAP to build a model to predict protein co-expression and create spatially-resolved tissue maps of the ECM, 3) contribute our 10+ years of expertise in ECM proteomics to ensure the effectiveness of future data collection, to capture ECM-relevant information, by members of the HuBMAP. For our efforts to benefit the entire scientific community, we will deploy all datasets and technologies via the HuBMAP portal and via MatrisomeDB, the ECM protein knowledge database we have previously developed. This mapping effort will constitute a first step toward understanding the roles of the ECM in health and diseases and toward the development of future ECM-focused diagnostic and therapeutic strategies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Gao其他文献

Yu Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Gao', 18)}}的其他基金

Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
  • 批准号:
    10493806
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas
细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱
  • 批准号:
    10816692
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas
细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱
  • 批准号:
    10649523
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
  • 批准号:
    10704135
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
  • 批准号:
    10225325
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
  • 批准号:
    9796389
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
  • 批准号:
    10449281
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
  • 批准号:
    10693198
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
  • 批准号:
    10001554
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
Neurobiological characteristics, parent-child relationships, and conduct problems in adolescence: A longitudinal multimodal neuroimaging study
青春期的神经生物学特征、亲子关系和行为问题:一项纵向多模式神经影像研究
  • 批准号:
    9924570
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了