Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
基本信息
- 批准号:10704135
- 负责人:
- 金额:$ 20.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptedAdvanced Malignant NeoplasmAmino Acid SequenceArchitectureAreaBenchmarkingBindingBiochemicalCategoriesCell physiologyCessation of lifeCommunitiesComplexComputer softwareDNA Sequence AlterationDataData SetDatabasesDevelopmentDigestionDiseaseEarly DiagnosisEnzymesExtracellular MatrixExtracellular Matrix ProteinsExtracellular StructureFibroblastsFutureGenerationsGenetic studyGrowth FactorIndividualKnowledgeMalignant NeoplasmsMapsMass Spectrum AnalysisMediatingMetabolicMethodsModalityModelingNeoplasm MetastasisNormal tissue morphologyOutcomePathway interactionsPatient-Focused OutcomesPeptide HydrolasesPeptide MappingPeptidesPerformancePlayPost-Translational Protein ProcessingPreparationPrognostic MarkerProliferatingPropertyProtein DenaturationProtein IsoformsProteinsProteolysisProteomicsProtocols documentationPublishingReagentResearchResearch PersonnelResistance developmentResourcesRoleSamplingSignal TransductionStructural ProteinStructureTechniquesTechnologyTimeTissuesTumor TissueTumor stageUnited StatesVial deviceVisualizationWorkanticancer researchcancer proteomicscell motilitychemical propertycostcrosslinkexperimental studyglycosylationimprovedin silicoinnovationinsightinstrumentationknowledge basematrigelmedical specialtiesneoplastic cellnew technologynovelnovel therapeuticspredictive modelingpredictive signaturepreventprotein data bankprotein foldingprotein functionprotein structuresearchable databasetargeted treatmenttherapeutic targetthree dimensional structurethree-dimensional modelingtooltranslational potentialtumortumor microenvironmenttumor progression
项目摘要
Project Summary
Cancer has claimed over 600,000 lives in 2020 in the United States. A better understanding of the mechanisms
underlying cancer progression has led to the development of early detection strategies and novel treatment
modalities that have contributed to the decrease in cancer-related deaths observed for the past few decades.
Yet, cancer remains a deadly disease. There is thus an acute need to identify new cancer vulnerabilities. This
will require exploring understudied aspects of cancers, which requires the development of novel technologies.
One understudied aspect of cancer is the extracellular matrix (ECM). The ECM is a complex meshwork of
proteins providing architectural support and biochemical signals critical for cellular functions required for tumor
progression. Overcoming technical challenges posed by largely insoluble ECM proteins, we previously devised
a proteomic pipeline specifically geared towards ECM proteins and showed that the tumor ECM is composed of
200+ distinct proteins. We further identified ECM signatures predictive of patient outcome and novel ECM
proteins playing functional roles in cancer progression. The ECM thus represents an important reservoir of
potential prognostic biomarkers and therapeutic targets. However, the ECM has many more secrets to reveal.
For example, ECM proteins exist in various isoforms and are extensively post-translationally modified, yet, we
do not know which proteoforms are present in the tumor ECM. ECM protein structure and the architecture of the
ECM meshwork is key to mediate function, yet, very little is known about ECM protein folding and its impact on
protein functions. Since proteomics relies on the generation of peptides from protein via proteolysis and protein
identification via database search, we propose that enhancing these steps will provide a more complete picture
of the cancer ECM and significantly advance cancer research. Here, we propose to use in-silico modeling to
define the optimal cleavage conditions to achieve near-complete coverage of ECM protein sequences (Aim 1).
Standard proteomic protocols rely on protein denaturation prior to protein digestion. Yet, we know that many
ECM functions are governed by its architecture. We thus propose to perform native ECM digestion to gain
insights into the structure of individual proteins, and the secondary and tertiary structures of the ECM meshwork
(Aim 2). To facilitate ECM research, we have previously developed a searchable database, MatrisomeDB,
compiling ECM proteomic dataset. Here, we propose to enhance the content and functionalities of MatrisomeDB
to include our new prediction model and a new tool to the visualize sequence coverage on 3D models of ECM
proteins predicted by Google’s AlphaFold (Aim 3). Our technology, offering substantial improvements over
conventional proteomic approaches, targets the unmet technical need to profile, with deep coverage and high
sensitivity, the protein composition of the tumor ECM. When deployed it will significantly lower the technical
barrier for other researchers to study the ECM, which will have a transformative impact on cancer research.
项目摘要
2020年,美国已有超过60万人死于癌症。更好地理解机制
潜在的癌症进展导致了早期检测策略和新治疗的发展
在过去几十年中观察到的有助于减少癌症相关死亡的方式。
癌症仍然是一种致命的疾病。因此,迫切需要确定新的癌症脆弱性。这
需要探索癌症研究不足的方面,这需要开发新技术。
癌症的一个未充分研究的方面是细胞外基质(ECM)。ECM是一个复杂的网络,
为肿瘤所需的细胞功能提供结构支持和生化信号的蛋白质
进展克服了很大程度上不溶性ECM蛋白所带来的技术挑战,我们以前设计了
一个专门针对ECM蛋白的蛋白质组学管道,并显示肿瘤ECM由以下组成:
200+不同的蛋白质。我们进一步确定了可预测患者结局的ECM特征和新型ECM
在癌症进展中发挥功能作用的蛋白质。因此,ECM代表了一个重要的储存库,
潜在的预后生物标志物和治疗靶点。然而,ECM还有更多的秘密要揭示。
例如,ECM蛋白存在于各种异构体中,并且被广泛地后修饰,然而,我们
不知道哪些蛋白质存在于肿瘤ECM中。ECM蛋白结构和细胞外基质的结构
ECM网络是介导功能的关键,然而,关于ECM蛋白折叠及其对细胞生长的影响知之甚少。
蛋白质功能由于蛋白质组学依赖于通过蛋白质水解从蛋白质生成肽,
通过数据库搜索识别,我们建议加强这些步骤将提供更完整的图片
癌症细胞外基质的研究,并显著推进癌症研究。在这里,我们建议使用计算机模拟建模,
定义最佳切割条件,以实现ECM蛋白序列的接近完全覆盖(目标1)。
标准蛋白质组学方案依赖于蛋白质消化之前的蛋白质变性。然而,我们知道,
ECM功能由其架构管理。因此,我们建议进行天然ECM消化以获得
深入了解单个蛋白质的结构,以及ECM网络的二级和三级结构
(Aim 2)的情况。为了促进ECM研究,我们以前开发了一个可搜索的数据库MatrisomeDB,
编译ECM蛋白质组数据集。在这里,我们建议增强MatrisomeDB的内容和功能
包括我们新的预测模型和一个新的工具,以可视化ECM 3D模型上的序列覆盖
谷歌AlphaFold预测的蛋白质(Aim 3)。我们的技术,提供了实质性的改进,
传统的蛋白质组学方法,目标是未满足的技术需求,以深覆盖和高
敏感性,肿瘤ECM的蛋白质组成。部署后,它将大大降低技术
这是其他研究人员研究ECM的障碍,这将对癌症研究产生变革性影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ten Years of Extracellular Matrix Proteomics: Accomplishments, Challenges, and Future Perspectives.
- DOI:10.1016/j.mcpro.2023.100528
- 发表时间:2023-04
- 期刊:
- 影响因子:7
- 作者:Naba, Alexandra
- 通讯作者:Naba, Alexandra
Matrisome AnalyzeR: A suite of tools to annotate and quantify ECM molecules in big datasets across organisms.
Matrisome AnalyzeR:一套用于注释和量化跨生物体大数据集中的 ECM 分子的工具。
- DOI:10.1101/2023.04.18.537378
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Petrov,PetarB;Considine,JamesM;Izzi,Valerio;Naba,Alexandra
- 通讯作者:Naba,Alexandra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Gao其他文献
Yu Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Gao', 18)}}的其他基金
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10493806 - 财政年份:2022
- 资助金额:
$ 20.66万 - 项目类别:
Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas
细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱
- 批准号:
10816692 - 财政年份:2022
- 资助金额:
$ 20.66万 - 项目类别:
Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas
细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱
- 批准号:
10649523 - 财政年份:2022
- 资助金额:
$ 20.66万 - 项目类别:
Thinking outside the cell: Leveraging HuBMAP data to build the human ECM atlas
细胞外思考:利用 HuBMAP 数据构建人类 ECM 图谱
- 批准号:
10527519 - 财政年份:2022
- 资助金额:
$ 20.66万 - 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
- 批准号:
10225325 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
- 批准号:
9796389 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
- 批准号:
10449281 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
- 批准号:
10693198 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Highly sensitive proteomics method to probe cell heterogeneity at single cell resolution
高灵敏度蛋白质组学方法以单细胞分辨率探测细胞异质性
- 批准号:
10001554 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Neurobiological characteristics, parent-child relationships, and conduct problems in adolescence: A longitudinal multimodal neuroimaging study
青春期的神经生物学特征、亲子关系和行为问题:一项纵向多模式神经影像研究
- 批准号:
9924570 - 财政年份:2018
- 资助金额:
$ 20.66万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 20.66万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 20.66万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 20.66万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 20.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 20.66万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 20.66万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 20.66万 - 项目类别:
Research Fellowships