Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
基本信息
- 批准号:10530744
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-12 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAcrylamidesAgitationAmidesAreaBiocompatible MaterialsBite ForceChemistryClinicalComposite ResinsCovalent InteractionDataDentalDental MaterialsDevelopmentDiffusionDimensionsEmulsionsEncapsulatedEstersEstheticsEvaluationExtravasationFailureFillerFluorescent DyesFormulationFractureFutureGenerationsGoalsGrowthInvestigationKineticsKnowledgeLaboratoriesLeadLengthLifeLongevityMasticationMentorsMethacrylatesMethodsMicrocapsules drug delivery systemMicroencapsulationsModificationMonitorOdontogenesisPhasePhysiologicalPolymersPostdoctoral FellowProcessProductionPropertyReactionReproducibilityResourcesShapesSignal TransductionStandardizationStressStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTorsionTranslationsViscositybasecapsuleclinically relevantcomposite restorationdental resindesigndigital imagingethylene glycolhealinghydrophilicityimprovedinnovationmechanical propertiesmonomernovelnovel strategiespolymerizationpolymerization stressprematurepreventrepairedrestorationrestorative dentistryrestorative materialside effectsuccessthermal stresstriethylene glycol
项目摘要
A promising strategy to overcome the limited survival of dental restorations lies is the addition of healing
microcapsules in the organic matrix of the restorative materials. These capsules, when reached by the crack,
are broken and release the healing agent, inhibiting its propagation. However, there are several critical gaps
and crucial improvements to make this approach suitable and commercially viable. Our long-term goals are
to introduce optimized healing agents, minimize the side effects of addition of the capsules, via shell wall
functionalization, and validate advanced method for encapsulation. Previous studies revealed that low
viscosity amides are capable of modulating the polymerization reaction, and more tough and degradationresistant than methacrylates, so these compounds are going to be used as alternative healing agents. In
addition, thiourethane surface functionalization has been shown to be an efficient method to increase fracture
toughness and reduce polymerization stress, so we propose to functionalize the capsule surface with this
compound -the methods for functionalization were developed in my post-doctoral mentor's laboratory, which
increases the chance of success. Finally, we aim at overcoming the main issues involved in the doubleemulsion method, such as poor size control of the capsules and high sensitivity of the method, by utilizing
the green chemistry coaxial electrohydrodynamic atomization (CEHDA) technique for the encapsulation
process. In summary, the following Specific Aims are proposed to: (1) Introduce amides as healing agents,
(2) Functionalize the microcapsule's surface with thiourethane oligomers, and (3) Improve encapsulation
process with advanced technology. The K99 mentored phase has been focused on tailoring and optimizing
the microcapsules synthesis in order to encapsulate properly compounds with different hydrophilicities and
minimize the healing agent leakage. The second main goal of this phase was to enhance the double torsion
fracture toughness technique to assess the healing efficiency and the kinetics of the crack propagation under
a more clinically relevant scenario. Collected data has highlighted that the incorporation of the microcapsules
into the thermosetting polymeric networks changes dramatically the kinetics of the crack formation and
propagation. Therefore, in the independent phase of this proposal, the crack growth kinetics and the polymer
healing will be closely monitored by the incorporation of fluorescent dyes into the encapsulated healing
agents, the investigation of the magnitude of the effects promoted by the addition of the microcapsules in
systems containing the unreacted compound triethylene glycol dibutanoate, and the use of digital image
correlation (DIC) technology. The central hypothesis is that the tough healing agent, shell wall
functionalization, and introduction of CEHDA method to produce capsules will significantly increase the
potential and viability of self-healing dental materials. This proposal will broadly impact the field by modifying
and improving essential self-healing components and developing an alternative method for encapsulation
process, making this approach a tangible resource for resin composites survival.
克服牙齿修复的有限存活率的一个很有希望的策略是增加愈合
微胶囊在修复材料的有机基质中。当这些胶囊被裂缝触及时,
被破坏并释放出治愈剂,抑制其传播。然而,有几个关键的差距
以及关键的改进,使这种方法适合并在商业上可行。我们的长期目标是
引入优化的治愈剂,通过壳壁将添加胶囊的副作用降至最低
功能化,并验证先进的封装方法。此前的研究表明,低血压
粘度酰胺类化合物能够调节聚合反应,并且比甲基丙烯酸酯类化合物更具韧性和耐降解性,因此这些化合物将被用作替代治愈剂。在……里面
此外,硫代乙烷表面功能化已被证明是一种增加裂缝的有效方法
韧性和降低聚合应力,所以我们建议用这个来功能化胶囊表面
化合物-功能化方法是在我的博士后导师的实验室开发的,它
增加了成功的机会。最后,我们的目标是克服复乳法中存在的主要问题,如胶囊尺寸控制不佳,方法灵敏度高等。
绿色化学同轴电流体雾化(CEHDA)技术在胶囊化中的应用
进程。综上所述,提出了以下具体目标:(1)引入酰胺作为治愈剂,
(2)用硫代低聚物对微胶囊表面进行功能化处理;(3)提高包封率
用先进的技术进行加工。K99指导阶段的重点是调整和优化
微胶囊的合成是为了将不同亲水性的化合物恰当地包埋在一起
最大限度地减少治愈剂的泄漏。这一阶段的第二个主要目标是增强双扭转。
断裂韧度技术评价裂纹愈合效率及裂纹扩展动力学
一种更具临床相关性的场景。收集到的数据突出表明,微胶囊的加入
进入热固性聚合物网络,极大地改变了裂纹形成的动力学和
传播。因此,在本提案的独立阶段,裂纹扩展动力学和聚合物
将通过在封装的愈合中加入荧光染料来密切监测愈合情况
药剂中添加微胶囊促进效应大小的调查
含有未反应化合物三甘醇二丁酸酯的体系,以及数字图像的使用
相关(DIC)技术。中心假设是坚韧的愈合剂,贝壳壁
功能化,并引入CEHDA方法生产胶囊将显著提高
自愈性牙科材料的潜力和生存能力。这项提议将对该领域产生广泛的影响,因为
以及改进基本的自愈组件并开发另一种封装方法
工艺,使这种方法成为树脂复合材料生存的有形资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Paula Piovezan Fugolin其他文献
Ana Paula Piovezan Fugolin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Paula Piovezan Fugolin', 18)}}的其他基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10609093 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
9804546 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10006815 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Novel Polymerization System of Acrylamides in the Presence of the Polymers having the Lower Critical Solution Temperature in Water
具有较低水中临界溶液温度的聚合物存在下的新型丙烯酰胺聚合体系
- 批准号:
14550841 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)