Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
基本信息
- 批准号:10530744
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-12 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAcrylamidesAgitationAmidesAreaBiocompatible MaterialsBite ForceChemistryClinicalComposite ResinsCovalent InteractionDataDentalDental MaterialsDevelopmentDiffusionDimensionsEmulsionsEncapsulatedEstersEstheticsEvaluationExtravasationFailureFillerFluorescent DyesFormulationFractureFutureGenerationsGoalsGrowthInvestigationKineticsKnowledgeLaboratoriesLeadLengthLifeLongevityMasticationMentorsMethacrylatesMethodsMicrocapsules drug delivery systemMicroencapsulationsModificationMonitorOdontogenesisPhasePhysiologicalPolymersPostdoctoral FellowProcessProductionPropertyReactionReproducibilityResourcesShapesSignal TransductionStandardizationStressStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTorsionTranslationsViscositybasecapsuleclinically relevantcomposite restorationdental resindesigndigital imagingethylene glycolhealinghydrophilicityimprovedinnovationmechanical propertiesmonomernovelnovel strategiespolymerizationpolymerization stressprematurepreventrepairedrestorationrestorative dentistryrestorative materialside effectsuccessthermal stresstriethylene glycol
项目摘要
A promising strategy to overcome the limited survival of dental restorations lies is the addition of healing
microcapsules in the organic matrix of the restorative materials. These capsules, when reached by the crack,
are broken and release the healing agent, inhibiting its propagation. However, there are several critical gaps
and crucial improvements to make this approach suitable and commercially viable. Our long-term goals are
to introduce optimized healing agents, minimize the side effects of addition of the capsules, via shell wall
functionalization, and validate advanced method for encapsulation. Previous studies revealed that low
viscosity amides are capable of modulating the polymerization reaction, and more tough and degradationresistant than methacrylates, so these compounds are going to be used as alternative healing agents. In
addition, thiourethane surface functionalization has been shown to be an efficient method to increase fracture
toughness and reduce polymerization stress, so we propose to functionalize the capsule surface with this
compound -the methods for functionalization were developed in my post-doctoral mentor's laboratory, which
increases the chance of success. Finally, we aim at overcoming the main issues involved in the doubleemulsion method, such as poor size control of the capsules and high sensitivity of the method, by utilizing
the green chemistry coaxial electrohydrodynamic atomization (CEHDA) technique for the encapsulation
process. In summary, the following Specific Aims are proposed to: (1) Introduce amides as healing agents,
(2) Functionalize the microcapsule's surface with thiourethane oligomers, and (3) Improve encapsulation
process with advanced technology. The K99 mentored phase has been focused on tailoring and optimizing
the microcapsules synthesis in order to encapsulate properly compounds with different hydrophilicities and
minimize the healing agent leakage. The second main goal of this phase was to enhance the double torsion
fracture toughness technique to assess the healing efficiency and the kinetics of the crack propagation under
a more clinically relevant scenario. Collected data has highlighted that the incorporation of the microcapsules
into the thermosetting polymeric networks changes dramatically the kinetics of the crack formation and
propagation. Therefore, in the independent phase of this proposal, the crack growth kinetics and the polymer
healing will be closely monitored by the incorporation of fluorescent dyes into the encapsulated healing
agents, the investigation of the magnitude of the effects promoted by the addition of the microcapsules in
systems containing the unreacted compound triethylene glycol dibutanoate, and the use of digital image
correlation (DIC) technology. The central hypothesis is that the tough healing agent, shell wall
functionalization, and introduction of CEHDA method to produce capsules will significantly increase the
potential and viability of self-healing dental materials. This proposal will broadly impact the field by modifying
and improving essential self-healing components and developing an alternative method for encapsulation
process, making this approach a tangible resource for resin composites survival.
一个有希望的策略来克服有限的生存的牙齿修复谎言是增加愈合
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Paula Piovezan Fugolin其他文献
Ana Paula Piovezan Fugolin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Paula Piovezan Fugolin', 18)}}的其他基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10609093 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
9804546 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10006815 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Novel Polymerization System of Acrylamides in the Presence of the Polymers having the Lower Critical Solution Temperature in Water
具有较低水中临界溶液温度的聚合物存在下的新型丙烯酰胺聚合体系
- 批准号:
14550841 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




