Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
基本信息
- 批准号:10530196
- 负责人:
- 金额:$ 229.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAgingAlzheimer associated neurodegenerationAlzheimer&aposs disease brainAlzheimer&aposs disease related dementiaBiological MarkersBrainClinicalClinical DataCognitiveDataData SetDementiaDevelopmentDiabetes MellitusDimensionsEarly DiagnosisFoundationsFundingGoalsGrantHeterogeneityHypertensionImageImpaired cognitionIndividualLeadMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsNerve DegenerationNeurodegenerative DisordersObesityPathologicPathologyPatternPersonsPhasePhenotypeProcessResourcesScanningSleep disturbancesSmokingSocioeconomic StatusStructureSystemTimeUnderrepresented PopulationsWorkaging brainbasecardiovascular risk factorcognitive performancecomorbiditydeep learningeffective therapyfrontierimaging modalityin vivoindexinginsightlearning strategymachine learning methodneuroimagingnovelpersonalized predictionspre-clinicalpredictive modelingpredictive panelprodromal Alzheimer&aposs diseasestatisticstoolvascular cognitive impairment and dementiaβ-amyloid burden
项目摘要
Abstract
Brain aging is commonly accompanied by a number of neuropathologic processes, often co-occurring, that
may lead to cognitive decline and dementia. Vascular contributions to cognitive impairment and dementia
(VCID) are also extremely common and, due to associations with cardiovascular risk factors, may be
mitigated with current therapies. It is clear that effective treatments for AD-related dementias (ADRD) will
require early detection of pathologic brain change at prodromal and cognitively normal stages. Imaging
methods offer the opportunity to study diverse brain changes present in aging and prodromal AD in ways
that were previously impossible. Characterizing these multi-faceted aspects of brain structure, function and
pathology not only provides insights into the underlying pathophysiological processes, but also novel
predictive in vivo biomarkers. Various studies have shown that relatively early signs of neurodegenerative
processes can be detected via AI-based pattern analysis and machine learning (PAML) methods, and that
these tools can provide powerful predictive individualized panels of predictors. Our group has been on the
frontier of developing PAML methods, and applying them to the new “Imaging-based coordinate SysTem
for AGing and NeurodeGenerative diseases” (iSTAGING) consortium, a large-scale effort pursued in the
current phase of our grant, which successfully brought together and harmonized over 51,000 MRIs and
clinical data from 11 studies and ~34,000 individuals. We aim to capture the heterogeneity of brain
change with aging and prodromal AD, by applying our heterogeneity analysis PAML deep learning (DL)
methods, which help structuring imaging patterns associated with different brain aging trajectories. Our
goal is to enrich the different dimensions of iSTAGING which will reflect various patterns of brain change,
hence capturing the underlying heterogeneity in quantifiable and replicable metrics. Although we will
include our previously derived measures of rsfMRI networks and of amyloid burden, in the proposed work
we will focus on further dissecting neuroanatomical heterogeneity, i.e. on refining the `N' in the AT(N)
framework to measure variability in AD neurodegeneration and the contributions of copathologies, and on
using these intermediate neuroimaging phenotypes to predict cognitive decline and clinical progression.
This will allow us to place each individual into the iSTAGING brain chart and map his/her trajectory, as well
to determine predictive indices of brain change and cognitive decline. The current project builds on the
foundational work of the previous funding phase, and expands this unique resource to include several
studies focusing on longitudinal data, on groups of under-represented socio-economic status, as well as on
various co-morbidities including hypertension, diabetes, obesity, smoking and sleep disturbances. The
proposed work will also leverage recent developments in deep learning, and will offer advanced methods
for harmonization, heterogeneity analysis, and predictive modeling.
摘要
脑老化通常伴随着许多神经病理过程,通常共同发生,
可能导致认知能力下降和痴呆。血管对认知障碍和痴呆的影响
(VCID)也非常常见,由于与心血管危险因素相关,
用目前的疗法缓解。很明显,AD相关痴呆(ADRD)的有效治疗将
需要在前驱期和认知正常阶段早期检测病理性脑部变化。成像
方法提供了机会,研究不同的大脑变化,目前在老化和前驱AD的方式
这在以前是不可能的。描述大脑结构、功能和
病理学不仅提供了对潜在的病理生理过程的见解,
预测性体内生物标志物。各种研究表明,神经退行性疾病的相对早期迹象
过程可以通过基于AI的模式分析和机器学习(PAML)方法进行检测,并且
这些工具可以提供强大的预测个体化预测器组。我们小组一直在
发展PAML方法的前沿,并将其应用于新的“基于成像的坐标系统”
老年化和神经退行性疾病”(iSTAGING)联盟,一个大规模的努力,
我们赠款的当前阶段,成功地汇集和协调了51,000多个MRI,
来自11项研究和约34,000人的临床数据。我们的目标是捕捉大脑的异质性
通过应用我们的异质性分析PAML深度学习(DL),
这些方法有助于构建与不同大脑老化轨迹相关的成像模式。我们
目标是丰富iSTAGING的不同维度,这将反映大脑变化的各种模式,
从而在可量化和可复制的度量中捕获潜在的异质性。虽然我们会
包括我们以前推导的rsfMRI网络和淀粉样蛋白负荷的测量,在拟议的工作中,
我们将集中于进一步剖析神经解剖学的异质性,也就是细化AT(N)中的“N”
测量AD神经退行性变的变异性和共同病理学的贡献的框架,以及
使用这些中间神经影像表型来预测认知能力下降和临床进展。
这将使我们能够将每个人放入iSTAGING大脑图表中,并绘制出他/她的轨迹,
以确定大脑变化和认知能力下降的预测指标。目前的项目建立在
上一个融资阶段的基础工作,并扩大这一独特的资源,包括几个
研究重点是纵向数据、社会经济地位代表性不足的群体以及
各种合并症,包括高血压、糖尿病、肥胖、吸烟和睡眠障碍。的
拟议的工作还将利用深度学习的最新发展,并将提供先进的方法,
用于协调、异质性分析和预测建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 229.1万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 229.1万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 229.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 229.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 229.1万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 229.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 229.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 229.1万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 229.1万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 229.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




