Rapid and non-invasive device for drug detection through sweat
通过汗液快速、非侵入性检测药物的装置
基本信息
- 批准号:10540571
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBenchmarkingBlood TestsBusinessesCessation of lifeClinicalClinical ResearchCollectionCrimeDataData ReportingDevicesDrug ScreeningDrug Use DisorderDrug usageEcosystemEnzyme-Linked Immunosorbent AssayEpidemicFeedbackGenerationsGrantHairHealthHealth ExpendituresHumanIndividualInnovation CorpsInterviewMethodsMichiganMicrofluidicsModelingMonitorNational Institute of Drug AbuseOpioidPainParticipantPatient Self-ReportPharmaceutical PreparationsPhasePrevention strategyProductivityProtocols documentationSalivaSeveritiesSmall Business Innovation Research GrantSubstance Abuse DetectionTechnologyTest ResultTestingTimeUnited StatesUnited States National Institutes of HealthUniversitiesUrineWorkWorkplaceabuse liabilitybasecommercializationcostcourtdesigndetectordisabilitydrug testingeconomic costeconomic impactminiaturizemultidrug abusephase 1 studyportabilityprogramsrapid detectionscreeningsocialsuccesstreatment strategy
项目摘要
Project Summary
In the NIDA SBIR Phase I project, Arborsense will develop a portable sweat-based screening device for rapid,
non-invasive, point-of-need, and quantitative detection of drugs of abuse. The use and abuse of potentially-
addictive substances has become a national crisis with immense social (~93,000 deaths in 2020) and economic
costs (~$400B annually). Consequently, regular drug-use testing and monitoring have become key components
of the management strategies to control this epidemic. Within most settings whether clinical, roadside tests,
workplace monitoring, or court-ordered compliance, having reliable and timely data on drug use is essential.
However, the available strategies to detect drug use which rely on testing blood, urine, saliva, hair, breath, and
sweat, are plagued by cumbersome collection methods and significant delays in receiving test results, thus
hampering the ability to provide up-to-date objective data on recent drug use. In this project, Arborsense
proposes to develop a sweat-based portable and inexpensive drug detection device using our technology based
on microfluidic competitive enzyme-linked immunosorbent assay where sweat will be collected on the front panel
and quantitative results will be available within a few minutes. In preliminary studies, we have demonstrated
rapid and quantitative detection of drugs/opioids in artificial sweat. For this Phase I study, Arborsense will
collaborate with the University of Michigan to develop and validate our portable sweat-based drug detector. First,
we will design, test, optimize and automate a miniaturized drug detection unit integrated with sweat generation
and collection modules. Next, we will validate the device and protocol on 20 human participants who are seeking
treatment for a drug use disorder and benchmark the results with urine drug screens and self-reported data. A
high degree of concordance between Arborsense’s device, urine test, and self-reported data will confirm the
feasibility of our proposed project, and will lead to a Phase II SBIR application to optimize the device for field use
which can then be evaluated in large scale clinical studies. Our envisioned product will address the unmet need
for a non-invasive, real-time, quantitative, point-of-use, and convenient device for rapid detection of use/abuse
of multiple drugs. Such a device has applications related to all points along the spectrum of severity of drug use
problems and will help augment prevention and treatment strategies, enhance health, and reduce illness and
disability. In the NIH I-Corps program, we will interview 100 individual stakeholders in the ecosystem to test our
hypotheses on the market pain-points, target entry market, product needs, competition, and revenue model. The
feedback gained from the I-Corps program will be used to refine and realign our existing business plan to
maximize commercialization success.
项目摘要
在NIDA SBIR第一阶段项目中,Arborsense将开发一种便携式汗液筛查设备,
非侵入性的、按需的和定量的药物滥用检测。使用和滥用潜在的-
成瘾物质已成为一个国家危机,造成巨大的社会(2020年约93,000人死亡)和经济损失。
成本(每年约4000亿美元)。因此,定期药物使用检测和监测已成为关键组成部分
控制疫情的管理策略在大多数情况下,无论是临床,路边测试,
工作场所监测或法院命令的遵守情况,掌握可靠和及时的药物使用数据至关重要。
然而,现有的检测药物使用的策略依赖于检测血液,尿液,唾液,头发,呼吸,
由于收集方法繁琐和收到检测结果的时间明显延迟,
妨碍提供关于最近吸毒情况的最新客观数据的能力。在这个项目中,Arborsense
建议开发一种基于汗液的便携式和廉价的药物检测设备,使用我们的技术,
在微流控竞争酶联免疫吸附测定中,汗液将被收集在前面板上,
几分钟之内就可以得到定量结果。在初步研究中,我们已经证明
人工汗液中药物/阿片类药物的快速定量检测。对于这项I期研究,Arborsense将
与密歇根大学合作开发和验证我们的便携式汗液药物检测仪。第一、
我们将设计、测试、优化和自动化一种集成汗液生成的小型药物检测装置,
收集模块。接下来,我们将在20名人类参与者身上验证该设备和协议,
治疗药物使用障碍,并以尿液药物筛查和自我报告的数据为基准。一
Arborsense设备、尿液检测和自我报告数据之间的高度一致性将证实
我们提议的项目的可行性,并将导致第二阶段SBIR应用,以优化现场使用的设备
然后可以在大规模临床研究中进行评估。我们设想的产品将解决未满足的需求
用于快速检测使用/滥用的非侵入性、实时、定量、使用点和方便的设备
多种药物。这样的装置具有与沿着药物使用的严重程度的谱的所有点沿着相关的应用
问题,并将有助于加强预防和治疗战略,增强健康,减少疾病,
残疾。在NIH I-Corps计划中,我们将采访生态系统中的100名个体利益相关者,以测试我们的
市场痛点、目标进入市场、产品需求、竞争和收入模式的假设。的
从I-Corps计划中获得的反馈将用于改进和调整我们现有的业务计划,
最大化商业化成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Girish Kulkarni其他文献
Girish Kulkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Girish Kulkarni', 18)}}的其他基金
Rapid and non-invasive device for drug detection through sweat
通过汗液快速、非侵入性检测药物的装置
- 批准号:
10544121 - 财政年份:2020
- 资助金额:
$ 5.5万 - 项目类别:
Rapid and non-invasive device for drug detection through sweat
通过汗液快速、非侵入性检测药物的装置
- 批准号:
10665052 - 财政年份:2020
- 资助金额:
$ 5.5万 - 项目类别:
Wearable Nanoelectronic Vapor Sensors for Transdermal Alcohol Monitoring
用于透皮酒精监测的可穿戴纳米电子蒸汽传感器
- 批准号:
10255523 - 财政年份:2017
- 资助金额:
$ 5.5万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant