CHIRP Computerized Histologic Risk Predictor (CHiRP) for Early Stage Lung Cancers

CHIRP 早期肺癌计算机化组织学风险预测器 (CHiRP)

基本信息

  • 批准号:
    10541900
  • 负责人:
  • 金额:
    $ 55.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

SUMMARY: In 2016 a total of 224,390 patients in the US were diagnosed with non-small cell lung cancer (NSCLC) and 16% of these patients (35,902) were diagnosed as early stage (I and II) and eligible for adjuvant cytotoxic chemotherapy (adj chemo). However, more than 50% of these patients may have low risk disease and hence may not receive added benefit from adj chemo, while suffering its side-effects. From an economic standpoint, unnecessary adj chemo for early stage NSCLC results in a loss of over $35,000 for each quality- adjusted life year lost. With increased lung cancer screening, we can expect an increase in diagnosis of early stage NSCLC. Two large completed randomized clinical trials of NSCLC (International Adjuvant Lung Cancer Trial (IALT) and JBR10) involving surgery with and without adj chemo, only found survival benefit in higher stage patients (>=Stage III). Unfortunately there are currently no validated predictive companion diagnostic (CDx) tools to identify (1) which stage II NSCLC are at a lower risk for disease recurrence and hence will not receive additional benefit from adj chemo and (2) which stage 1A, 1B patients are at elevated risk and hence will benefit? Extant genomic assays have only been shown to be prognostic (i.e. they predict mortality or recurrence) in early stage NSCLC, 1–5, but this does not imply they are predictive (i.e. they do not predict treatment response). Recently, our group validated the computerized histologic risk predictor (CHiRP), an approach that relies solely on computer extracted morphologic measurements (e.g. cellular orientation, texture, shape, architecture) from standard H&E tissue slide images to predict early recurrence in early stage NSCLC. CHiRP has been shown to be prognostic with an accuracy>85% in three independent clinical cohorts (N=290); higher compared to what has been previously reported for molecular based prognostic tests. However, to show that CHiRP is predictive, we need access to randomized clinical trial data involving early stage NSCLC patients treated with surgery and surgery+ adj chemo. The only two trials that fit these criteria are IALT and JBR10. Since molecular tests are tissue destructive, validation is more difficult compared to a tissue non-destructive approach like CHiRP; clinical trial groups are often reluctant to share tissue blocks since it is a valuable resource. For this study we have obtained preliminary approval for use of the slide images from IALT and JBR10 to establish CHiRP as a predictive Affordable Precision Medicine (APM) solution. This Academic-Industry partnership will leverage long-standing collaborations between (1) the Madabhushi group at Case Western who bring expertise in computational histomorphometric imaging, (2) the Velcheti group at the Cleveland Clinic (CCF) with clinical expertise in treatment and management of early stage NSCLC, and (3) Inspirata Inc., a cancer diagnostics company which has recently licensed a number of histomorphometry based technologies from the Madabhushi group and who will bring quality management systems and production software standards to help create a pre-commercial CHiRP test.
摘要:2016年,美国共有224,390名患者被诊断患有非小细胞肺癌。 这些患者中有16%(35,902例)被诊断为早期(I期和II期),有资格接受辅助化疗。 细胞毒性化学疗法(形容词化疗)。然而,这些患者中超过50%可能患有低风险疾病, 因此可能不会从辅助化疗中获得额外的益处,同时遭受其副作用。从经济 从这个角度来看,早期NSCLC的不必要的辅助化疗导致每种质量的损失超过35,000美元- 调整生命年损失。随着肺癌筛查的增加,我们可以预期早期诊断的增加。 晚期NSCLC。两项已完成的NSCLC大型随机临床试验(国际辅助性肺癌 试验(IALT)和JBR 10)涉及手术加或不加辅助化疗,仅发现较高分期的生存获益 患者(>= III期)。不幸的是,目前还没有经过验证的预测伴随诊断(CDx)工具 确定(1)哪些II期NSCLC的疾病复发风险较低,因此不会接受 辅助化疗的额外益处和(2)哪些1A、1B期患者风险较高,因此将受益? 现存的基因组测定仅在早期癌症中显示出预后性(即它们预测死亡率或复发)。 1-5期NSCLC,但这并不意味着它们是预测性的(即它们不能预测治疗反应)。 最近,我们的研究小组验证了计算机组织学风险预测(CHiRP),这是一种依赖于 仅基于计算机提取的形态学测量结果(例如,细胞方向、纹理、形状、架构) 从标准H&E组织切片图像中预测早期NSCLC的早期复发。CHiRP已被证明 在三个独立的临床队列(N=290)中,准确率>85%的预后;与 先前已报道用于基于分子的预后测试。然而,为了证明CHiRP具有预测性, 我们需要获得涉及接受手术治疗的早期NSCLC患者的随机临床试验数据, 手术+化疗符合这些标准的仅有两项试验是IALT和JBR 10。由于分子测试是 组织破坏性,与CHiRP等组织非破坏性方法相比,验证更加困难;临床 试验组通常不愿意共享组织块,因为它是有价值的资源。在这项研究中, 获得了使用IALT和JBR 10的幻灯片图像的初步批准,以将CHiRP确定为 经济实惠的精准医疗(APM)解决方案。 这种学术界与工业界的伙伴关系将利用(1) 凯斯西方的Madabhushi小组带来了计算组织形态学成像的专业知识,(2) 克利夫兰诊所(CCF)的Velcheti小组在治疗和管理早期阶段的临床专业知识 NSCLC,和(3)Inspirata Inc.,一家癌症诊断公司最近批准了一些 来自Madabhushi集团的基于组织形态学的技术, 系统和生产软件标准,以帮助创建一个预商用CHiRP测试。

项目成果

期刊论文数量(95)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A prognostic and predictive computational pathology image signature for added benefit of adjuvant chemotherapy in early stage non-small-cell lung cancer.
  • DOI:
    10.1016/j.ebiom.2021.103481
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Wang X;Bera K;Barrera C;Zhou Y;Lu C;Vaidya P;Fu P;Yang M;Schmid RA;Berezowska S;Choi H;Velcheti V;Madabhushi A
  • 通讯作者:
    Madabhushi A
Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab.
  • DOI:
    10.1136/jitc-2021-003778
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Jazieh K;Khorrami M;Saad A;Gad M;Gupta A;Patil P;Viswanathan VS;Rajiah P;Nock CJ;Gilkey M;Fu P;Pennell NA;Madabhushi A
  • 通讯作者:
    Madabhushi A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pingfu Fu其他文献

Pingfu Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 55.22万
  • 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
  • 批准号:
    10315227
  • 财政年份:
    2021
  • 资助金额:
    $ 55.22万
  • 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
  • 批准号:
    443988
  • 财政年份:
    2021
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
  • 批准号:
    20K09011
  • 财政年份:
    2020
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
  • 批准号:
    19K09130
  • 财政年份:
    2019
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
  • 批准号:
    19K18225
  • 财政年份:
    2019
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
  • 批准号:
    18K16337
  • 财政年份:
    2018
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
  • 批准号:
    10005254
  • 财政年份:
    2018
  • 资助金额:
    $ 55.22万
  • 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
  • 批准号:
    9763320
  • 财政年份:
    2018
  • 资助金额:
    $ 55.22万
  • 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
  • 批准号:
    18K07341
  • 财政年份:
    2018
  • 资助金额:
    $ 55.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了