Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
基本信息
- 批准号:10552678
- 负责人:
- 金额:$ 18.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceBiometryChronic DiseaseComputer softwareDataData ScienceDietDietary PracticesEnvironmentEquilibriumFaceFeedbackFoodFood PatternsFundingGeneticGoalsGuidelinesHealthIndividualInformaticsInterventionKnowledgeLearningLinkMental HealthMethodsModelingOutcomeParticipantPathway interactionsPatternPersonsPhysiologyPopulationPrecision HealthRisk ReductionSocial CharacteristicsSpecific qualifier valueStructureSystemTranslatingUnited States National Institutes of HealthWorkcausal modelcostdata preservationdietarydietary guidelinesemotional eatingimprovedindividual responseinnovationlearning strategynovel strategiesnutritionphysical conditioningprecision nutritionpreservationprogramsstatisticstool
项目摘要
Abstract-Project 2: Causal Relationship Disentangler for Precision Nutrition
Predicting individual responses to food and dietary patterns, the stated goal of the National Institutes
of Health (NIH) Common Fund’s Nutrition for Precision Health program, requires uncovering the causal
connections between diet and health. Despite the importance of diet for treating and reducing risk of many
chronic diseases, guidelines often rely on associations rather than causal relationships. Establishing a causal
model (set of causal relationships) is vital to provide accurate dietary guidelines to individuals and help them
balance priorities. The key obstacles to a comprehensive model of causes and effects of diet have been a lack
of methods to translate findings to new populations and a lack of data suitable to learn about causes. The first
major challenge is understanding to whom and under what conditions a finding applies. There are no existing
methods that can identify causal relationships between diet and other factors and can determine when these
findings apply. A second core obstacle is that dietary studies often capture different sets of variables due to the
cost and challenge of collecting data on the many causes and effects of nutrition, and many studies rely on
food logs kept by participants. This leads to missing variables and missing values, and both can confound
causal inference. Many methods exist for imputing missing values but they may lead to unacceptable errors for
individuals based on patterns of missingness in real-world data. Single imputation methods provide a single
value for each missing instance. Thus, given the type of missingness we face in nutrition (both missing
at random [MAR] and missing not at random [MNAR]) and the importance of establishing causal
relationships rather than correlations, there is a significant need for new imputation methods. To
address this, we introduce new approaches for handling missing data that preserve causal structure.
In the Causal Relationship Disentangler for Precision Nutrition we propose new methods for causal
generalizability that learn when and why causal relationships are true. Our methods are applicable to
all health outcomes and timescales. Learning how to transfer causal knowledge and doing so with missing
data is critically important for realizing the potential of nutrition for precision health. Precision health requires
knowing what conclusions we can draw about both populations and individuals and being able to
systematically predict what interventions will work for an individual. Our automated approaches to generalizing
causal models will provide the critical link between data and actions, allowing the knowledge created to
generalize beyond All of Us. Our investigative team has for over a decade developed new methods that learn
causal models from observational data and provide automated causal explanations, as well as statistics, data
science, and biostatistics. Aim 1 will develop methods for generalizing causal relationships and learning when
they apply. Aim 2 will develop improved methods for reconstructing missing data that preserve causal
structure. Aim 3 will develop individual and generalizable causal models of nutrition and health.
摘要-项目2:精准营养的因果关系分解器
预测个人对食物和饮食模式的反应,国家研究所的既定目标
美国国家卫生研究院(NIH)共同基金的营养精准健康计划,要求揭示因果关系,
饮食与健康之间的联系尽管饮食对于治疗和降低许多疾病的风险很重要,
对于慢性疾病,指南往往依赖于关联而不是因果关系。建立因果
模型(一组因果关系)对于为个人提供准确的饮食指南并帮助他们
平衡优先级。建立饮食因果关系综合模型的主要障碍是缺乏
缺乏将研究结果转化为新人群的方法,以及缺乏适合了解原因的数据。第一
主要的挑战是了解调查结果适用于谁以及在什么条件下适用。没有现有
这些方法可以确定饮食和其他因素之间的因果关系,并可以确定这些因素何时发生。
调查结果适用。第二个核心障碍是,饮食研究往往捕捉不同的变量集,
收集有关营养的许多原因和影响的数据的成本和挑战,许多研究依靠
参与者保存的食物日志。这会导致缺失变量和缺失值,两者都可能混淆
因果推理有许多方法可以估算缺失值,但它们可能导致不可接受的误差,
基于真实世界数据中的缺失模式。单一插补方法提供单一
每个缺失实例的值。因此,考虑到我们在营养方面面临的缺失类型(两者都缺失),
随机(MAR)和非随机缺失(MNAR))以及确定因果关系的重要性
如果我们认为这是一种关系而不是相关性,那么就非常需要新的估算方法。到
为了解决这个问题,我们引入了新的方法来处理丢失的数据,保持因果结构。
在精准营养的因果关系分解器中,我们提出了因果关系的新方法。
学习因果关系何时以及为何为真的普遍性。我们的方法适用于
所有的健康结果和时间表。学习如何转移因果知识,并在缺失的情况下这样做
数据对于实现营养对精准健康的潜力至关重要。精准健康需要
知道我们可以从人群和个体中得出什么结论,
系统地预测哪些干预措施对个人有效。我们的自动化方法,
因果模型将提供数据和行动之间的关键联系,使创造的知识,
超越我们所有人。我们的调查团队十多年来一直在开发新的方法,
因果模型从观测数据,并提供自动因果解释,以及统计,数据
科学和生物统计学。目标1将发展概括因果关系和学习的方法,
他们适用。Aim 2将开发改进的方法来重建缺失数据,
结构目标3将发展个别和可推广的营养和健康因果模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMANTHA KLEINBERG其他文献
SAMANTHA KLEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMANTHA KLEINBERG', 18)}}的其他基金
Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
- 批准号:
10386500 - 财政年份:2022
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10577884 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9282329 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
- 批准号:
8852180 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9097149 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10415027 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 18.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)