Project 2: Causal Relationship Disentangler for Precision Nutrition

项目2:精准营养的因果关系解开器

基本信息

项目摘要

Abstract-Project 2: Causal Relationship Disentangler for Precision Nutrition Predicting individual responses to food and dietary patterns, the stated goal of the National Institutes of Health (NIH) Common Fund’s Nutrition for Precision Health program, requires uncovering the causal connections between diet and health. Despite the importance of diet for treating and reducing risk of many chronic diseases, guidelines often rely on associations rather than causal relationships. Establishing a causal model (set of causal relationships) is vital to provide accurate dietary guidelines to individuals and help them balance priorities. The key obstacles to a comprehensive model of causes and effects of diet have been a lack of methods to translate findings to new populations and a lack of data suitable to learn about causes. The first major challenge is understanding to whom and under what conditions a finding applies. There are no existing methods that can identify causal relationships between diet and other factors and can determine when these findings apply. A second core obstacle is that dietary studies often capture different sets of variables due to the cost and challenge of collecting data on the many causes and effects of nutrition, and many studies rely on food logs kept by participants. This leads to missing variables and missing values, and both can confound causal inference. Many methods exist for imputing missing values but they may lead to unacceptable errors for individuals based on patterns of missingness in real-world data. Single imputation methods provide a single value for each missing instance. Thus, given the type of missingness we face in nutrition (both missing at random [MAR] and missing not at random [MNAR]) and the importance of establishing causal relationships rather than correlations, there is a significant need for new imputation methods. To address this, we introduce new approaches for handling missing data that preserve causal structure. In the Causal Relationship Disentangler for Precision Nutrition we propose new methods for causal generalizability that learn when and why causal relationships are true. Our methods are applicable to all health outcomes and timescales. Learning how to transfer causal knowledge and doing so with missing data is critically important for realizing the potential of nutrition for precision health. Precision health requires knowing what conclusions we can draw about both populations and individuals and being able to systematically predict what interventions will work for an individual. Our automated approaches to generalizing causal models will provide the critical link between data and actions, allowing the knowledge created to generalize beyond All of Us. Our investigative team has for over a decade developed new methods that learn causal models from observational data and provide automated causal explanations, as well as statistics, data science, and biostatistics. Aim 1 will develop methods for generalizing causal relationships and learning when they apply. Aim 2 will develop improved methods for reconstructing missing data that preserve causal structure. Aim 3 will develop individual and generalizable causal models of nutrition and health.
摘要-项目2:精准营养的因果关系解缠器 预测个体对食物和饮食模式的反应,这是国家研究所宣布的目标 卫生部(NIH)共同基金的精确健康营养计划,要求揭开原因 饮食与健康之间的联系。尽管饮食对于治疗和降低许多疾病的风险很重要 在慢性病方面,指南往往依赖于关联而不是因果关系。确定因果关系 模型(一组因果关系)对于向个人提供准确的饮食指南并帮助他们至关重要 权衡优先事项。饮食因果关系的综合模型的主要障碍是缺乏 缺乏将研究结果转化为新人群的方法,以及缺乏适用于了解病因的数据。第一 主要的挑战是理解调查结果适用于谁以及在什么条件下适用。没有现有的 可以确定饮食和其他因素之间的因果关系的方法,并可以确定这些因素 研究结果也适用。第二个核心障碍是饮食研究经常捕捉到不同的变量集,这是由于 收集关于营养的许多原因和影响的数据的成本和挑战,许多研究依赖于 参与者保存的食物记录。这会导致缺少变量和缺失值,并且两者都可能混淆 因果推论。有许多方法可用于输入缺失值,但它们可能会导致无法接受的错误 基于真实世界数据中缺失模式的个体。单一归罪方法提供了单一的 每个缺少的实例的值。因此,考虑到我们面临的营养缺失类型(两者都缺失 随机[MAR]和非随机[MANAR])以及确定因果关系的重要性 关系,而不是相互关系,因此需要新的归罪方法。至 为了解决这个问题,我们引入了新的方法来处理丢失的数据,这些方法保留了因果结构。 在用于精确营养的因果关系解缠器中,我们提出了新的因果关系方法 了解因果关系何时为真以及为什么为真的概括性。我们的方法适用于 所有健康结果和时间表。学习如何传递因果知识,并在缺失的情况下这样做 数据对于实现营养对精准健康的潜力至关重要。精准的健康要求 知道我们可以对人口和个人得出什么结论,并能够 系统地预测哪些干预措施对个人有效。我们的自动泛化方法 因果模型将提供数据和行动之间的关键链接,允许创建的知识 超越我们所有人的概括。我们的调查团队十多年来一直在开发新的方法,学习 根据观测数据建立因果模型,并提供自动因果解释以及统计数据 科学和生物统计学。目标1将开发概括因果关系的方法并在以下情况下学习 它们适用于。目标2将开发改进的方法来重建保留因果关系的丢失数据 结构。目标3将开发营养与健康的个别化和概括性因果模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMANTHA KLEINBERG其他文献

SAMANTHA KLEINBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMANTHA KLEINBERG', 18)}}的其他基金

Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
  • 批准号:
    10386500
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    10577884
  • 财政年份:
    2013
  • 资助金额:
    $ 18.72万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
  • 批准号:
    8852180
  • 财政年份:
    2013
  • 资助金额:
    $ 18.72万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    9282329
  • 财政年份:
    2013
  • 资助金额:
    $ 18.72万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    9097149
  • 财政年份:
    2013
  • 资助金额:
    $ 18.72万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    10415027
  • 财政年份:
    2013
  • 资助金额:
    $ 18.72万
  • 项目类别:

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了