BIGDATA: Causal Inference in Large-Scale Time Series

大数据:大规模时间序列中的因果推断

基本信息

  • 批准号:
    10577884
  • 负责人:
  • 金额:
    $ 28.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project summary Large datasets generated by hospitals could have a transformative effect on medical knowledge and patient care. Yet currently the volume of data is more likely to overwhelm clinicians and the challenges of the data can overwhelm machine learning algorithms. Intensive care units (ICUs) generate data at a resolution of seconds, for the entirety of a patient's stay. Our long-term goal is to turn these data into actionable knowledge, like risk factors for a disease, early intervention targets, and real-time information to support clinical decisions. This is a broad problem, but particularly important in ICUs, which involve high stakes decisions being made in a complex environment under time pressure. We focus in particular on understanding consciousness in adults, and neurologic status in neonates. While 7% of ICU admissions are due to loss of consciousness, and degree of consciousness is critical to evaluating prognosis, making difficult choices such as when to withdraw care, and providing early interventions to improve quality of life, there are no objective or automated assessments for consciousness (adults) or neurologic status (neonates). We have shown that unresponsive patients with brain activation were twice as likely to regain the ability to follow commands compared to unresponsive patients without such activation, yet these assessments are too time consuming for regular clinical use. However we also showed that physiological data routinely collected in ICUs can be used as a proxy to classify consciousness. It is still not known why it changes and we must be sure that the patterns we find are in fact causal to avoid treating symptoms instead of a disease or launching unsuccessful clinical trials. There have been two key barriers preventing a causal understanding of consciousness. First, variables measured for each ICU patient differ, and can differ within a patient over the course of their admission. This leads to confounding when attempting to infer causal models, and has prevented learning a single model for all patients, which limits generalizability. Second, while the challenges of medical data require new methods, researchers are rarely able to rigorously evaluate and compare them, since real-world data lacks ground truth and often cannot be shared for privacy reasons. To address these challenges, we aim 1) to develop methods that learn generalizable causal models with latent variables (by intelligently sharing and combining information across patients), 2) to develop data driven simulations methods for testing machine learning algorithms while preserving privacy, and 3) to apply these methods to neonatal and neurological ICU data. We aim to create better indicators for consciousness and to uncover causes of both neurological status in ICU and its link to long-term functional outcomes. Our work turns potential weaknesses of medical data (different variables measured across individuals) into a strength, and will enable better use of large-scale observational biomedical data for real-time treatment decisions.
项目摘要 医院生成的大型数据集可能对医疗知识和患者产生变革性影响 在乎然而,目前的数据量更有可能压倒临床医生和数据的挑战, 压倒机器学习算法。重症监护室(ICU)以秒的分辨率生成数据, 在病人住院期间都是如此我们的长期目标是将这些数据转化为可操作的知识,就像风险一样。 疾病因素、早期干预目标和支持临床决策的实时信息。这是 这是一个广泛的问题,但在ICU中尤其重要,因为它涉及到在一个 时间压力下的复杂环境。我们特别关注理解成年人的意识, 和新生儿的神经系统状态。虽然7%的ICU入院是由于意识丧失, 意识对于评估预后至关重要,做出困难的选择,如何时撤销护理, 提供早期干预以改善生活质量,没有客观或自动评估, 意识(成人)或神经系统状态(新生儿)。我们已经证明大脑反应迟钝的病人 与无反应的患者相比, 如果没有这种激活,这些评估对于常规的临床使用来说太耗时。然而,我们也 显示,在ICU中常规收集的生理数据可以用作对意识进行分类的代理。是 仍然不知道为什么它会改变,我们必须确保我们发现的模式实际上是因果关系,以避免治疗 症状而不是疾病或启动不成功的临床试验。有两个关键的障碍 阻碍了对意识的因果理解首先,每个ICU患者测量的变量不同, 在病人入院的过程中会有所不同。这会导致在尝试 推断因果模型,并阻止学习所有患者的单一模型,这限制了普遍性。 其次,虽然医学数据的挑战需要新的方法,但研究人员很少能够严格地 评估和比较它们,因为真实世界的数据缺乏基本事实,并且通常不能出于隐私考虑而共享 原因为了应对这些挑战,我们的目标是:1)开发学习可推广因果模型的方法, 潜在变量(通过智能地共享和组合患者之间的信息),2)开发数据驱动 在保护隐私的同时测试机器学习算法的模拟方法,以及3)应用这些方法 方法新生儿和神经ICU数据。我们的目标是创造更好的意识指标, 揭示ICU中神经系统状态的原因及其与长期功能结局的联系。我们的工作 将医疗数据的潜在弱点(个体之间测量的不同变量)转化为优势, 并将能够更好地利用大规模的观察性生物医学数据进行实时治疗决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMANTHA KLEINBERG其他文献

SAMANTHA KLEINBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMANTHA KLEINBERG', 18)}}的其他基金

Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
  • 批准号:
    10386500
  • 财政年份:
    2022
  • 资助金额:
    $ 28.15万
  • 项目类别:
Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
  • 批准号:
    10552678
  • 财政年份:
    2022
  • 资助金额:
    $ 28.15万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
  • 批准号:
    8852180
  • 财政年份:
    2013
  • 资助金额:
    $ 28.15万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    9282329
  • 财政年份:
    2013
  • 资助金额:
    $ 28.15万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    9097149
  • 财政年份:
    2013
  • 资助金额:
    $ 28.15万
  • 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
  • 批准号:
    10415027
  • 财政年份:
    2013
  • 资助金额:
    $ 28.15万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了