BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
基本信息
- 批准号:8852180
- 负责人:
- 金额:$ 20.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBehaviorBrainCollectionComplexDataData SetDecision MakingEtiologyEvaluationEventFaceFloodsFrequenciesInstructionIntensive Care UnitsKnowledgeLeadMeasuresMedicineMethodsModelingNeurologicOutcomePatient MonitoringPatientsPatternPhysiologicalPoliciesProbabilityResearch PersonnelResolutionSeizuresSeriesSocial SciencesStreamStrokeSystemTimeTranslationsValidationbasecomputer scienceimprovedinsightresearch study
项目摘要
DESCRIPTION (provided by applicant): With the increasing availability of large-scale datasets such as from intensive care units (ICUs), researchers face a flood of data that does not lead immediately to knowledge. Given its volume and frequency of collection (ICU patients are monitored every 5 seconds) many important events will be rare occurrences. Unlike the traditional approach of prospectively measuring a small set of variables hypothesized to be important, these observational datasets contain a large, unselected, and incomplete set of features. They can allow insight into cases where experiments are infeasible, but using them for decision-making requires new methods for finding the impact of rare events and hidden variables in complex time sense, along with realistic simulated data for evaluation. This proposal addresses two main challenges of large-scale observational data: 1) evaluating the causal impact of rare events, and 2) identifying latent causes. First, we leverage the volume of data and the connection between type (general) and token (singular) causality to infer a model of how a system normally functions, and then determine whether rare event explain a deviation from usual behavior. The basic approach of company a model and observed instances forms the basis for finding latent variables, where we aim to find how much of a variable's value (or how many of its occurrences) is due to influences outside the dataset and to find shared causes for sets of variables. This is motivated by applications to neurological ICU (NICU) data streams where the volume of continuous recordings of patients' brain activity and physiological signs surpasses clinicians' ability to find complex patterns in real time to use them for treatment. Further, clinicians need to know not just that a patient is having a seizure (a low probability event with a potentially significant impact on outcomes), but whether it is causing harm before they can determine how to treat it. To enable rigorous validation of the algorithms, we develop a new computational platform for generating simulated NICU time series data. The methods will improve understanding of seizures in stroke patients and will be broadly applicable to large-scale high- resolution time series data, enabling discoveries in areas such as computational social science. RELEVANCE (See instructions); The methods developed will improve the translation of data to knowledge to policy by identifying actionable information on causes, enabling better and more rapid decision-making by clinicians. Creating and disseminating realistic simulated data will allow for comparison and validation of methods, facilitating computational advances by researchers in computer science and medicine.
描述(由申请人提供):随着来自重症监护病房(ICU)的大规模数据集的日益可用,研究人员面临着大量不能立即获得知识的数据。鉴于其收集的数量和频率(ICU患者每5秒监测一次),许多重要事件将很少发生。与传统的前瞻性测量一小部分假设重要的变量的方法不同,这些观测数据集包含大量、未选择的和不完整的特征集。它们可以洞察实验不可行的情况,但将它们用于决策需要新的方法来寻找复杂时间意义上罕见事件和隐藏变量的影响,以及用于评估的真实模拟数据。这项建议解决了大规模观测数据的两个主要挑战:1)评估罕见事件的因果影响,2)确定潜在原因。首先,我们利用数据量以及类型(一般)和令牌(单一)因果关系之间的联系来推断系统如何正常运行的模型,然后确定罕见事件是否解释了与正常行为的偏差。公司模型和观察实例的基本方法形成了寻找潜在变量的基础,我们的目标是找出一个变量的值有多少(或它的出现次数)是由于数据集之外的影响,并找到变量集的共同原因。这是由神经ICU(NICU)数据流的应用推动的,其中患者大脑活动和生理体征的连续记录的数量超过了临床医生实时发现复杂模式以使用它们进行治疗的能力。此外,临床医生不仅需要知道患者是否有癫痫发作(这是一种可能对预后产生重大影响的小概率事件),还需要知道它是否正在造成伤害,然后才能确定如何治疗它。为了能够严格验证算法,我们开发了一个新的计算平台来生成模拟的NICU时间序列数据。这些方法将提高对中风患者癫痫发作的理解,并将广泛适用于大规模高分辨率时间序列数据,使在计算社会科学等领域的发现成为可能。相关性(见说明);开发的方法将通过确定关于原因的可操作信息,改进数据到知识到政策的转化,使临床医生能够更好、更快地做出决策。创建和传播真实的模拟数据将允许比较和验证方法,促进计算机科学和医学研究人员的计算进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMANTHA KLEINBERG其他文献
SAMANTHA KLEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMANTHA KLEINBERG', 18)}}的其他基金
Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
- 批准号:
10386500 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
- 批准号:
10552678 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10577884 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9282329 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9097149 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10415027 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 20.61万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 20.61万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 20.61万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 20.61万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 20.61万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 20.61万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 20.61万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 20.61万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 20.61万 - 项目类别:
Standard Grant