Modeling Core
建模核心
基本信息
- 批准号:10551465
- 负责人:
- 金额:$ 39.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-17 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdoptedAwardBiocompatible MaterialsBiological AssayBiological MarkersBloodBronchoalveolar Lavage FluidCOVID-19 patientCOVID-19 pneumoniaCalciumCalcium ChannelCellsCessation of lifeClinicalClinical DataClinical Decision Support SystemsCollaborationsCritical IllnessDataData SetDimensionsDiseaseDoseDrug KineticsEnsureGenerationsGoalsHeterogeneityImmune responseInfectionInterventionMachine LearningMeasuresMedicineModelingMolecularMultiomic DataNasal EpitheliumNatureNosocomial pneumoniaOutcomePathogenesisPatientsPharmacodynamicsPhasePhysiciansPhysiologicalPneumoniaPublishingPulmonary FibrosisResearch PersonnelSamplingSpace ModelsSystemSystems BiologyTechnologyTestingTherapeutic StudiesWorkbiomarker identificationclinical decision-makingclinical phenotypecohortcommunity acquired pneumoniacoronavirus diseasediscrete timefield studyhealth care settingsidiopathic pulmonary fibrosisimproved outcomeinhibitormachine learning algorithmmolecular markermortalitymultidimensional datamultiple omicsnew therapeutic targetnovelnovel markernovel strategiespathogenpharmacologicpneumonia modelpneumonia treatmentpost-COVID-19predictive modelingrandomized trialresponsesevere COVID-19single cell analysisstatistical and machine learningsuccesstargeted treatmenttherapeutic targettooltool developmenttranscriptomicsventilation
项目摘要
Project Summary/Abstract – Modeling Core
The Modeling Core, as part of SCRIPT, aimed to apply machine learning approaches to clinical and -omics data
generated by the SCRIPT projects and cores to develop a models of severe pneumonia and identify novel
biomarkers and therapeutic targets. Using an iterative systems biology approach, we generated a detailed
model, published in Nature, of how severe SARS-CoV-2 pneumonia, in contrast with severe pneumonia due to
other pathogens, possesses a peculiar host response pathobiology that explains its propensity to cause
prolonged critical illness. Importantly, SCRIPT’s model predicted the efficacy of an experimental pharmacologic
intervention in SARS-CoV-2 pneumonia – the CRAC channel inhibitor Auxora. In this renewal, Super-SCRIPT
(SCRIPT2) will continue to leverage serial sampling of biological materials (bronchoalveolar lavage fluid, nasal
epithelium, blood) paired with cutting-edge multi-omics technologies and deep clinical phenotyping to develop
models of pneumonia pathogenesis which could augment clinical decision making. We used clinical and -omics
data collected and generated during the first cycle of this award to generate preliminary data for the renewal. We
discretized time in the ICU and related physiological measures on a per-day basis, similar to how physicians
view and treat patients with severe pneumonia in the ICU. Our novel approach overcomes a critical limitation in
the application of machine learning approaches to clinical data, which often do not take into account interventions
that can change the course of the disease and typically focus only on clinical state at presentation and ultimate
outcome, analogous to drawing a line between two points. We generated a low-dimensional interpretable latent
space model of clinical states in patients with severe pneumonia. We show that transitions between these clinical
states are different in patients with SARS-CoV-2 pneumonia and other types of pneumonia. By projecting results
of -omics assays onto this clinical latent space, we propose to identify biomarkers associated with favorable and
unfavorable clinical transitions. We will use this latent space model of severe pneumonia to test the hypothesis
that machine learning approaches can identify interpretable cellular and molecular biomarkers of
favorable and unfavorable clinical transitions during the clinical course of severe pneumonia. We will
test this hypothesis in three interrelated Specific Aims:
Aim 1: To generate an interpretable latent space model of clinical states and transitions (disease
trajectories) in patients with severe pneumonia using data collected within SCRIPT2.
Aim 2: To identify cellular and molecular biomarkers and clinical interventions predictive of transitions
between unfavorable and favorable clinical states in patients with severe pneumonia using data
collected within SCRIPT2.
Aim 3: To generalize models generated using SCRIPT2 to external datasets.
项目概要/摘要-建模核心
建模核心,作为CIMT的一部分,旨在将机器学习方法应用于临床和组学数据
由CRTT项目和核心产生,以开发重症肺炎模型并识别新的
生物标志物和治疗靶点。使用迭代系统生物学方法,我们生成了详细的
发表在《自然》杂志上的一个模型,该模型描述了SARS-CoV-2肺炎的严重程度,与因肺炎引起的严重肺炎相比,
其他病原体,具有独特的宿主反应病理生物学,解释了其导致
长期重病。更重要的是,CIMT的模型预测了一种实验性药理学疗法的有效性。
SARS-CoV-2肺炎的干预-CRAC通道抑制剂Corp.在这次更新中,超级
(CRT 2)将继续利用生物材料(支气管肺泡灌洗液、鼻内
上皮、血液)与尖端的多组学技术和深度临床表型相结合,
肺炎发病机制的模型,可以增强临床决策。我们使用临床和组学
在本合同的第一个周期中收集和生成的数据,用于生成续约的初步数据。我们
在ICU中的离散时间和每天的相关生理测量,类似于医生如何
在重症监护室观察和治疗重症肺炎患者。我们的新方法克服了
将机器学习方法应用于临床数据,通常不考虑干预措施
它可以改变疾病的进程,通常只关注表现和最终的临床状态,
结果,类似于在两点之间画一条线。我们生成了一个低维的可解释的潜在
重症肺炎患者临床状态的空间模型我们发现,这些临床之间的过渡
SARS-CoV-2肺炎和其他类型肺炎患者的状态不同。通过预测结果
在这个临床潜在的空间上,我们建议鉴定与有利的和
不利的临床转变。我们将用这个重症肺炎的潜伏空间模型来检验这个假设
机器学习方法可以识别可解释的细胞和分子生物标志物,
重症肺炎临床过程中有利和不利的临床转变。我们将
在三个相互关联的具体目标中检验这一假设:
目的1:生成临床状态和转换(疾病)的可解释潜在空间模型
轨迹)中使用的数据收集的严重肺炎患者在2012年2月。
目的2:确定细胞和分子生物标志物以及预测转变的临床干预措施
严重肺炎患者的不利和有利临床状态之间的差异
收集到的数据。
目标3:将使用WITT 2生成的模型推广到外部数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LUIS A. Nunes AMARAL其他文献
LUIS A. Nunes AMARAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LUIS A. Nunes AMARAL', 18)}}的其他基金
A MESOSCOPIC LATTICE MODEL FOR STUDYING NUCLEIC ACID FOLDING DYNAMICS
用于研究核酸折叠动力学的介观晶格模型
- 批准号:
8171900 - 财政年份:2010
- 资助金额:
$ 39.67万 - 项目类别:
A MESOSCOPIC LATTICE MODEL FOR STUDYING NUCLEIC ACID FOLDING DYNAMICS
用于研究核酸折叠动力学的介观晶格模型
- 批准号:
7956361 - 财政年份:2009
- 资助金额:
$ 39.67万 - 项目类别:
EMERGENCE OF COMPLEX DYNAMICS IN SIMPLE SIGNALING NETWORKS
简单信号网络中复杂动态的出现
- 批准号:
7366513 - 财政年份:2006
- 资助金额:
$ 39.67万 - 项目类别:
Integrative Approach to Characterizing Gene Regulation
表征基因调控的综合方法
- 批准号:
6849335 - 财政年份:2004
- 资助金额:
$ 39.67万 - 项目类别:
Integrative Approach to Characterizing Gene Regulation
表征基因调控的综合方法
- 批准号:
7348375 - 财政年份:2004
- 资助金额:
$ 39.67万 - 项目类别:
Integrative Approach to Characterizing Gene Regulation
表征基因调控的综合方法
- 批准号:
6705190 - 财政年份:2004
- 资助金额:
$ 39.67万 - 项目类别:
Integrative Approach to Characterizing Gene Regulation
表征基因调控的综合方法
- 批准号:
7188527 - 财政年份:2004
- 资助金额:
$ 39.67万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 39.67万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 39.67万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 39.67万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 39.67万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 39.67万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 39.67万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 39.67万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 39.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 39.67万 - 项目类别:
Research Fellowships