Big Data and Machine Learning-enabled Automated BIM for Projects (Auto-BIM): A Common Data Collaborative System for Improved Project Performance
支持大数据和机器学习的项目自动化 BIM (Auto-BIM):用于提高项目绩效的通用数据协作系统
基本信息
- 批准号:104796
- 负责人:
- 金额:$ 77.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"BIM is touted as an effective way of addressing issues affecting the productivity of the construction industry. The task-force on BIM hypothesises that with BIM-adoption, ""significant improvement in cost, value and carbon-performance can be achieved through the use of open-sharable asset-information"". To reinforce its benefits, the government Construction-2025 lists BIM as a key-element for achieving its goal of 33% lower-cost, 50% faster-delivery, 50% lower-emissions and 50% improvement in export.Although there has been an increase in BIM-adoption, companies still find it difficult to implement the ""real"" BIM and realise the expected benefits. This is because of the naming convention in line with PAS-1192 and the need for adequate building-information to accompany 3D-representation of building materials/elements/products in a collaborative environment. For organisations that have surpassed the barrier to BIM-adoption, the main-challenge remains getting everyone involved in collaborative-projects to use CDE and to ascertain the exact-level of(and the specific) information required for different aspects and types of assets. Thus, some projects on which BIM is claimed to be used have only assembled digital information without providing useful information for construction, in the short-term, and data for asset-management in the long-term.Notwithstanding these challenges, there is currently no tool to support organisational BIM-adoption and compliance with the standard, leverage previous project lessons/historic data, support automated Construction-Operations-Building-Information-Exchange-(COBie) and facilitate supply-chain integration with product-manufacturers. Based on these, the project adopts techniques in Machine-Learning-(ML) and Big-Data-Analytics to create an innovative tool-(Auto-BIM) as a plug-in to BIM-tools. It consists of four-elements as follows:1\.**Automated-Naming-of-BIM-model-in-a-CDE-approach(Auto-BIMName)--**This helps project team to name their files in consistency/compliance with PAS-1192 and BS-EN-ISO-19650\. It would also help in automatically mapping the title-block, which is currently being done manually between collaborating companies/originators and roles.2\.**Automated-Population-of-Building-Information(Auto-BIMPopulate)--**This will prepopulate the 3D-representation of products/elements with relevant metadata including the Omniclass classification, model number, service information, materials, etc. This will facilitate a conventional approach to project communication/collaboration, and accelerate BIM-adoption and benefit-realisation.3\. **Automated-Sharing-of-BIM-Objects-and-Model-Data****(Auto-BIMShare)--**The Auto-BIMShare provides a unique platform for sharing reusable object library and associated information to facilitate common-language across software boundaries. It will also provide opportunities for manufacturers to make their products/materials available for potential specifiers and buyers. The Auto-BIMShare would facilitate co-creation/sharing of information between the design, procurement, and maintenance/operation team within/across projects4\.**Automated-BIM-learning-Platform(Auto-BIMLearn)--**BIM currently has no capacity for diagnosing projects. The Auto-BIMLearn would leverage on historical data, tacit knowledge(lesson-learnt) and asset management-information to support design, construction and asset management decisions."
“BIM被吹捧为解决影响建筑业生产力问题的有效方法。BIM工作组假设,随着BIM的采用,“通过使用开放共享的资产信息,可以实现成本,价值和碳性能的显着改善”。为了强化其效益,政府的“建设2025“将BIM列为实现其目标的关键要素,即降低33%的成本,加快50%的交付,减少50%的排放和改善50%的出口。尽管BIM的采用率有所增加,但企业仍然难以实施“真实的”BIM并实现预期效益。这是因为符合PAS-1192的命名惯例,以及需要足够的建筑信息,以在协作环境中伴随建筑材料/元件/产品的3D表示。对于已经超越BIM采用障碍的组织来说,主要的挑战仍然是让每个参与协作项目的人都使用CDE,并确定资产的不同方面和类型所需的确切(和特定)信息。因此,一些声称使用BIM的项目只收集了数字信息,而没有提供短期内有用的施工信息和长期的资产管理数据。尽管存在这些挑战,目前还没有工具来支持组织采用BIM并遵守标准,利用以前的项目经验教训/历史数据,支持自动化施工-运营-建筑-信息-交换(COBie),并促进与产品制造商的供应链集成。在此基础上,该项目采用机器学习(ML)和大数据分析技术,创建了一个创新工具(Auto-BIM)作为BIM工具的插件。它由以下四个要素组成:1.** CDE方法中BIM模型的自动化命名(Auto-BIMName)--** 这有助于项目团队按照PAS-1192和BS-EN-ISO-19650的一致性/合规性命名其文件。它还将有助于自动映射标题栏,目前正在合作公司/发起人和角色之间手动完成。2\.**建筑信息自动填充(Auto-BIM填充)-** 这将使用相关元数据(包括Omniclass分类、型号、服务信息、材料等)预填充产品/元素的3D表示。这将促进项目沟通/协作的传统方法,并加速BIM采用和效益实现。** BIM对象和模型数据自动共享 *(Auto-BIMShare)-** Auto-BIMShare提供了一个独特的平台,用于共享可重用对象库和相关信息,以促进跨软件边界的通用语言。它还将为制造商提供机会,使他们的产品/材料可供潜在的规格和买家。Auto-BIMShare将促进项目内/跨项目的设计、采购和维护/运营团队之间的信息共同创建/共享4\。**自动BIM学习平台(Auto-BIMLearn)-**BIM目前没有诊断项目的能力。Auto-BIMLearn将利用历史数据、隐性知识(经验教训)和资产管理信息来支持设计、施工和资产管理决策。"
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Collaborative R&D
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Standard Grant
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
- 批准号:
23K14005 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
What's the Big Deal About Big Data?: How Machine Learning is Transforming Health and Healthcare in Nova Scotia
大数据有什么大不了的?:机器学习如何改变新斯科舍省的健康和医疗保健
- 批准号:
485607 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Miscellaneous Programs
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mining Social Media Big Data for Toxicovigilance: Studying Substance Use via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法研究药物使用
- 批准号:
10588855 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
Machine learning, big data, and simulation modeling to lower the burden of cervical cancer
机器学习、大数据和仿真建模减轻宫颈癌负担
- 批准号:
574931-2022 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
University Undergraduate Student Research Awards
Computational Foundations of Machine Learning in the Era of Big Data
大数据时代机器学习的计算基础
- 批准号:
RGPIN-2017-05032 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
Levelling up SME business growth in the UK using big data and machine learning.
利用大数据和机器学习促进英国中小企业业务增长。
- 批准号:
10047319 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
Collaborative R&D