STATISTICAL INFERENCE FOR SPARSE CATEGORICAL DATA
稀疏分类数据的统计推断
基本信息
- 批准号:2182208
- 负责人:
- 金额:$ 7.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-05-01 至 1998-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data in health-related sciences are often measured on categorical scales.
Tables that display such data are often sparse, having few observations
in many categories. Two common reason are (1) the study may have a small
number of subjects, because of cost, ethics, or patient availability, or
(2) repeated measurement of responses may produce a large
multidimensional table. The proposed research focuses on developing
statistical methodology for such sparse data.
Small-sample analyses: Exact and nearly exact methods will be developed
for making inferences about associations between categorical responses.
New methods include a modified test of conditional independence that is
less conservative than the usual one; a corresponding confidence interval
for an odds ratio effect in the stratified 2X2 case in narrower than the
usual one. Exact statistical inference will be further developed for
associations and interactions involving ordered categorical responses.
Repeated categorical measurement data: Methods will be further developed
to describe how categorical response vary across occasions and according
to values of covariates, with special emphasis on the ordinal-response
case. Models to be developed include parametric and non-parametric
versions of models for subject-specific effects, latent class and mixture
models, and models for marginal distributions. A newly developed maximum
likelihood algorithm will be utilized to fit some models that are awkward
to handle with standard methods.
Models will be applied to relevant biomedical problems. For instance,
exact methods are useful for making comparison of treatment on a
categorical response when the sample size is small and large-sample
approximations are untrustworthy. The subject-specific models are useful
for subjects-wise comparisons of treatments in cross-over studies and in
describing occasion effects in randomized clinical trials that involve
making observations at the beginning and end of a treatment period.
Latent class models are useful assessing inter-rater reliability.
与健康有关的科学数据往往是按分类尺度衡量的。
显示这些数据的表通常是稀疏的,只有很少的观测值
在许多类别中。 两个常见的原因是(1)研究可能有一个小
受试者数量,由于成本、伦理或患者可用性,或
(2)对响应的重复测量可能会产生较大的
多维表 研究重点是开发
这种稀疏数据的统计方法。
小样本分析:将开发精确和接近精确的方法
来推断分类反应之间的关联。
新的方法包括修改后的条件独立性测试,
比通常的保守性小;相应的置信区间
对于分层2X2情况下的比值比效应,
通常的一个。 精确的统计推断将进一步发展,
涉及有序分类反应的关联和互动。
重复分类测量数据:将进一步开发方法
描述分类反应如何在不同场合和根据
协变量的值,特别强调顺序响应
案子 拟开发的模型包括参数模型和非参数模型
针对特定受试者效应、潜在类别和混合的模型版本
模型和边际分布模型。 新开发的最大
似然算法将被用来拟合一些模型,是笨拙的
用标准的方法来处理。
模型将应用于相关的生物医学问题。 比如说,
精确的方法是有用的,使治疗的比较,
小样本和大样本时的分类响应
近似值是不可信的。 主题特定的模型是有用的
用于交叉研究和
描述随机临床试验中的场合效应,
在治疗期开始和结束时进行观察。
潜在类别模型是评估评分者间信度的有用工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Agresti其他文献
Alan Agresti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Agresti', 18)}}的其他基金
STATISTICAL INFERENCE SPARSE ORDERED CATEGORICAL DATA
统计推断稀疏有序分类数据
- 批准号:
3302898 - 财政年份:1990
- 资助金额:
$ 7.14万 - 项目类别:
STATISTICAL INFERENCE SPARSE ORDERED CATEGORICAL DATA
统计推断稀疏有序分类数据
- 批准号:
3302896 - 财政年份:1990
- 资助金额:
$ 7.14万 - 项目类别:
STATISTICAL INFERENCE SPARSE ORDERED CATEGORICAL DATA
统计推断稀疏有序分类数据
- 批准号:
3302895 - 财政年份:1990
- 资助金额:
$ 7.14万 - 项目类别:
STATISTICAL INFERENCE SPARSE ORDERED CATEGORICAL DATA
统计推断稀疏有序分类数据
- 批准号:
3302897 - 财政年份:1990
- 资助金额:
$ 7.14万 - 项目类别:
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
- 批准号:
23K11128 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
- 批准号:
23H01420 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
- 批准号:
567961-2022 - 财政年份:2022
- 资助金额:
$ 7.14万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
- 批准号:
EP/W007355/1 - 财政年份:2022
- 资助金额:
$ 7.14万 - 项目类别:
Research Grant
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
- 批准号:
577586-2022 - 财政年份:2022
- 资助金额:
$ 7.14万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
- 批准号:
22K10604 - 财政年份:2022
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
- 批准号:
22K20514 - 财政年份:2022
- 资助金额:
$ 7.14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up