Computing with Lie groups and algebras: nilpotent orbits and applications
使用李群和代数进行计算:幂零轨道和应用
基本信息
- 批准号:DP190100317
- 负责人:
- 金额:$ 22.97万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2019
- 资助国家:澳大利亚
- 起止时间:2019-04-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to advance knowledge of an important class of Lie algebras, for which recent work has shown that a deeper mathematical theory, and better computational tools are required. Lie theory is a mathematical area with rich applications in the physical sciences. Expected outcomes from this project include the first systematic treatment of these algebras, new powerful algorithms to compute with them, and explicit nilpotent orbit classifications that will solve open problems in black hole theory. This should significantly enhance fundamental mathematical research and the Lie functionality of leading computer algebra systems, and is expected to strengthen international linkages.
该项目旨在推进一类重要的李代数的知识,最近的工作表明,需要更深入的数学理论和更好的计算工具。李理论是一个数学领域,在物理科学中有着丰富的应用。该项目的预期成果包括首次系统地处理这些代数,使用它们进行计算的新的强大算法,以及明确的幂零轨道分类,这些分类将解决黑洞理论中的开放问题。这将大大加强基础数学研究和领先的计算机代数系统的Lie功能,并有望加强国际联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Dr Heiko Dietrich其他文献
Prof Dr Heiko Dietrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Dr Heiko Dietrich', 18)}}的其他基金
Computing with matrix groups and Lie algebras: new concepts and applications
使用矩阵群和李代数进行计算:新概念和应用
- 批准号:
DE140100088 - 财政年份:2014
- 资助金额:
$ 22.97万 - 项目类别:
Discovery Early Career Researcher Award
相似国自然基金
Lie和Jordan代数:表示和同调
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
约化Lie群的限制表示的离散分解性
- 批准号:22ZR1422900
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
Lie群紧化空间上的Kähler-Ricci流
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Lie球几何及其子几何中子流形的局部分类与整体刚性问题
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
与3×3矩阵谱问题相联系的Lie-Poisson Hamilton系统的作用-角变量
- 批准号:12001013
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
直接线性化与离散可积系统的Lie代数分类
- 批准号:11901198
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
半单Lie代数相关的若干经典和量子可积系统的代数和几何性质
- 批准号:11871396
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
Hilbert C*-模算子代数上的Lie导子及相关问题
- 批准号:11801005
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
算子代数的Lie结构及高斯态的纠缠、EPR操控研究
- 批准号:11671006
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
与gl(3)相关的Lax矩阵产生的Lie-Poisson Hamilton系统的分离变量
- 批准号:11626140
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
2 College Truths & 1 Lie: Social Media Embedded Gamified Normative Re-education
2 大学真相
- 批准号:
10593626 - 财政年份:2023
- 资助金额:
$ 22.97万 - 项目类别:
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 22.97万 - 项目类别:
Standard Grant
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 22.97万 - 项目类别:
Studentship
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
- 批准号:
EP/Y001478/1 - 财政年份:2023
- 资助金额:
$ 22.97万 - 项目类别:
Research Grant
Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
- 批准号:
23H01068 - 财政年份:2023
- 资助金额:
$ 22.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transforming Groups: The Use of Individuation to Aid Collaborative Recall and Lie Detection in Intelligence-gathering Contexts
转变群体:利用个性化来帮助情报收集环境中的协作回忆和测谎
- 批准号:
2754576 - 财政年份:2022
- 资助金额:
$ 22.97万 - 项目类别:
Studentship
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
- 批准号:
22K03299 - 财政年份:2022
- 资助金额:
$ 22.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
$ 22.97万 - 项目类别:
Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
- 批准号:
RGPIN-2020-05557 - 财政年份:2022
- 资助金额:
$ 22.97万 - 项目类别:
Discovery Grants Program - Individual