Explaining the outcomes of complex computational models
解释复杂计算模型的结果
基本信息
- 批准号:DP190100006
- 负责人:
- 金额:$ 28.67万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2019
- 资助国家:澳大利亚
- 起止时间:2019-07-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop new algorithms that automatically generate explanations for the results produced by complex computational models. In recent times, these models have become increasingly accurate, and hence pervasive. However, the reasoning of Deep Neural Networks and Bayesian Networks, and of complex Regression models and Decision Trees is often unclear, impairing effective decision making by practitioners who use the results of these models or investigate the decisions made by the systems. Practical benefits of clear decision making reasoning by complex computational models include reduced risk, increased productivity and revenue, appropriate adoption of technologies including improved education for practitioners, and improved outcomes for end users. Significant benefits will be demonstrated through the evaluations with practitioners in the areas of healthcare and energy.
该项目旨在开发新的算法,自动生成复杂计算模型产生的结果的解释。近年来,这些模型变得越来越准确,因此越来越普遍。然而,深度神经网络和贝叶斯网络以及复杂的回归模型和决策树的推理通常是不清楚的,这损害了使用这些模型的结果或调查系统所做决策的从业者的有效决策。通过复杂的计算模型进行清晰的决策推理的实际好处包括降低风险,提高生产力和收入,适当采用技术,包括改善从业人员的教育,以及改善最终用户的结果。通过与医疗保健和能源领域的从业人员进行评估,将证明其具有显著的益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Ingrid Zukerman其他文献
Prof Ingrid Zukerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Ingrid Zukerman', 18)}}的其他基金
Monitoring health and wellbeing of seniors using unintrusive sensors
使用非侵入式传感器监测老年人的健康和福祉
- 批准号:
LP150100060 - 财政年份:2016
- 资助金额:
$ 28.67万 - 项目类别:
Linkage Projects
Responding to requests and situations in assistive computer systems - a decision-theoretic approach
响应辅助计算机系统中的请求和情况 - 决策理论方法
- 批准号:
DP120100103 - 财政年份:2012
- 资助金额:
$ 28.67万 - 项目类别:
Discovery Projects
Towards realistic verbal interactions between people and computers-a probabilistic approach
实现人与计算机之间真实的言语交互——概率方法
- 批准号:
DP110100500 - 财政年份:2011
- 资助金额:
$ 28.67万 - 项目类别:
Discovery Projects
A progressive study of user and sensor models for monitoring and assisting elderly people, focusing on the visually impaired
对用于监测和帮助老年人的用户和传感器模型的渐进研究,重点关注视障人士
- 批准号:
LP100200405 - 财政年份:2011
- 资助金额:
$ 28.67万 - 项目类别:
Linkage Projects
Sentiment detection from opinion surveys -- the quest for customer and employee satisfaction
从民意调查中检测情绪——追求客户和员工满意度
- 批准号:
LP0883416 - 财政年份:2008
- 资助金额:
$ 28.67万 - 项目类别:
Linkage Projects
A Minimum Message Length Approach for Discourse Interpretation
话语解释的最小消息长度方法
- 批准号:
DP0344013 - 财政年份:2003
- 资助金额:
$ 28.67万 - 项目类别:
Discovery Projects
Deja-Vu -- A mechanism for constructing dialogue memory for resource-bounded agents
Deja-Vu——一种为资源有限的智能体构建对话记忆的机制
- 批准号:
LP0347470 - 财政年份:2003
- 资助金额:
$ 28.67万 - 项目类别:
Linkage Projects
Query interpretation and response generation in large on-line resources
大型在线资源中的查询解释和响应生成
- 批准号:
DP0209565 - 财政年份:2002
- 资助金额:
$ 28.67万 - 项目类别:
Discovery Projects
相似海外基金
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Early-life predictors of primary school learning outcomes in children with complex special educational needs: A prospective longitudinal study of tube
具有复杂特殊教育需求的儿童小学学习成果的早期预测因素:管的前瞻性纵向研究
- 批准号:
2887024 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Studentship
Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
- 批准号:
10636681 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
ROS Signaling in Wound Healing vs Tissue Repair
伤口愈合与组织修复中的 ROS 信号传导
- 批准号:
10654242 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Mechanism of stringent translation initiation: a probe for its biological relevance
严格翻译起始机制:对其生物学相关性的探索
- 批准号:
10660217 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Toward Clinical Trial: AXL-STAT3 Targeting of Lung Tumor Microenvironments
走向临床试验:AXL-STAT3 靶向肺肿瘤微环境
- 批准号:
10660429 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Immunogenetics of Outcomes Disparities After Allogeneic HCT
同种异体 HCT 后结果差异的免疫遗传学
- 批准号:
10659539 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别:
Treating Maternal Depression in an Urban Community-Based Pediatric Asthma Clinic: Targeting Maternal Mood, Child Asthma Outcomes, and Health Disparities
在城市社区小儿哮喘诊所治疗孕产妇抑郁症:针对孕产妇情绪、儿童哮喘结果和健康差异
- 批准号:
10723233 - 财政年份:2023
- 资助金额:
$ 28.67万 - 项目类别: