Developing deep critical information behaviour

发展深入的关键信息行为

基本信息

  • 批准号:
    AH/H03661X/1
  • 负责人:
  • 金额:
    $ 27.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

There is evidence that a 'surface' form of information behaviour (information seeking, evaluation and use) is widespread amongst young people at both school and university level. This is characterised by relatively unsophisticated and ineffective information seeking based on a 'least effort' principle, and a relatively uncritical approach to evaluating information in terms of its authority and appropriateness in relation to task needs. Young people often display an over-reliance on the relatively uncritical use of major search engines, in particular Google; poor understanding of their own information needs and poor search strategies lacking an analytic approach; little time spent on assessing the accuracy, authority or relevance of sources before using information for academic work; inability to reduce large volumes of information; and satisfaction with poor quality information.This is problematic in that a deeper (i.e. more reflective and critical) approach to information seeking, evaluation and use has been linked to academic performance, and is key to the development of the independent evidence-based learning and problem solving required to participate fully in work and personal life in modern society.The aim of this research is to contribute to the improvement of young people's ability to develop and engage in deep critical information behaviour - to seek, find, evaluate and use information effectively. The research seeks to discover the nature, extent and pattern of occurrence of relatively deep and surface information behaviours amongst young people at pre-university and undergraduate levels. It also seeks to establish the pattern of development of information behaviour from relatively surface to deeper levels of information behaviour, and the the effects of surface information behaviour, as perceived by young people and those who teach them. The research will also focus on the extent to which - and how - the development of deep information behaviour be enabled and fostered.The research will be conducted in 3 strands and will use a blend of qualitative and quantitative research methods. Strand 1 will employ a qualitative interpretive research approach, appropriate to building deep explanatory models based on data relating to participants' inner perspectives, which ultimately drive behaviour. Strand 2 will use a quantitative approach to explore the statistical generalisability of key aspects of the qualitative model developed in Strand 1. It will also provide a statistical picture of the pattern of occurrence of different information behaviours across a large representative sample of school and university students. It will generate a similar quantitative mapping of the perceptions of key stakeholders (teachers, lecturers and librarians) relating to the causes and effects of surface information behaviour, and the drivers and inhibitors to the development of deeper approaches. Strand 3 will entail the generation of a model integrating the deep qualitative understanding (Strand 1) with the complementary statistical evidence based on a large representative sample (Strand 2). This mix of complementary types of evidence is intended to enhance the potential impact on practitioners and policy makers - the target audience for a conference planned at the end of the project. This conference will be held for invited teachers, lecturers, librarians, and those influencing school and university teaching and learning policy (Local Education Authority representatives; University Directors of Teaching and Learning). Its purpose will be to integrate the findings of the research within the broader knowledge base of researchers and practitioners, and to discuss strategies for improving the development and engagement in deep critical information behaviour by young people at school and university. The deliverable of this strand of the research will be a report focusing on strategies for achieving this.
有证据表明,一种“表面”形式的信息行为(寻找、评估和使用信息)在中学和大学层面的年轻人中很普遍。这种情况的特点是,基于“最小努力”原则的信息搜寻相对简单和无效,以及根据任务需求对信息的权威性和适当性进行评估的相对不加批判的方法。年轻人经常表现出过度依赖相对不关键的主要搜索引擎的使用,特别是谷歌;对自己的信息需求缺乏了解,缺乏分析方法的搜索策略;在将信息用于学术工作之前,很少花时间评估来源的准确性、权威性或相关性;无法减少大量信息;这是有问题的,因为寻求、评估和使用信息的更深层次(即更具反思性和批判性)的方法与学业成绩挂钩,是发展独立的循证学习和解决问题的关键,这是充分参与现代社会工作和个人生活所必需的。这项研究的目的是帮助年轻人提高发展和从事深度批判性信息行为的能力--有效地寻找、发现、评估和使用信息。这项研究试图发现在大学预科和本科阶段的年轻人中,相对深入和表面的信息行为的性质、程度和发生模式。它还试图确定信息行为的发展模式,从相对较浅的信息行为到更深层次的信息行为,以及年轻人和教授他们的人所感受到的表面信息行为的影响。这项研究还将侧重于在多大程度上以及如何促进和促进深度信息行为的发展。研究将分三个方面进行,并将使用定性和定量研究方法相结合。STRAND 1将采用定性解释性研究方法,适用于根据与参与者的内在观点有关的数据建立深入的解释性模型,这些数据最终会驱动行为。Strand 2将使用定量方法来探索Strand 1中开发的定性模型的关键方面的统计概括性。它还将提供在具有代表性的大样本中小学生和大学生中不同信息行为发生模式的统计图景。它将生成一个类似的量化地图,显示关键利益攸关方(教师、讲师和图书管理员)对表面信息行为的原因和影响的看法,以及制定更深层次方法的驱动因素和制约因素。STRAND 3将需要生成一个模型,将深入的定性理解(STRAND 1)与基于大样本代表性样本的互补统计证据相结合(STRAND 2)。这一互补类型证据的混合旨在加强对实践者和政策制定者的潜在影响--他们是计划在项目结束时举行的会议的目标受众。本次会议将为特邀教师、讲师、图书馆馆员以及影响学校和大学教学政策的人员(地方教育当局代表、大学教学主任)举行。其目的将是将研究结果纳入研究人员和从业人员的更广泛的知识库,并讨论改进青少年在中小学和大学中发展和参与深度关键信息行为的战略。这一系列研究的成果将是一份侧重于实现这一目标的战略的报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Ford其他文献

Nigel Ford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel Ford', 18)}}的其他基金

Developing effective Web-based information seeking for inquiry-based learning: a meta-cognitive approach
开发有效的基于网络的信息搜索以实现基于探究的学习:元认知方法
  • 批准号:
    AH/E009778/1
  • 财政年份:
    2007
  • 资助金额:
    $ 27.54万
  • 项目类别:
    Research Grant

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
  • 批准号:
    10572582
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
  • 批准号:
    10741596
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
  • 批准号:
    10842647
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
  • 批准号:
    10784808
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
  • 批准号:
    10658576
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
Prospective Validation of Neurophysiologic Outcome Prediction in Acute Brain Injury
急性脑损伤神经生理结果预测的前瞻性验证
  • 批准号:
    10584338
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
Linking the deep carbon cycle with critical mineral deposits
将深层碳循环与关键矿藏联系起来
  • 批准号:
    FT230100348
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
    ARC Future Fellowships
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
  • 批准号:
    10719312
  • 财政年份:
    2023
  • 资助金额:
    $ 27.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了