Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
基本信息
- 批准号:BB/F005296/2
- 负责人:
- 金额:$ 54.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Agriculture underpins European industry with an annual turnover of more than ¤1 trillion and is essential for our survival. As resources dwindle and world populations grow, our demands on agriculture will also increase. As climate changes in the coming decades, current trends suggest that global temperatures will rise. Not only is mean temperature set to change but weather systems are also becoming less predictable: an unprecedented frost this year resulted in a failure of the Californian citrus crop, costing the industry $450 million. The combination of increased demand on agriculture and the changes in global climate and weather extremes represent a major challenge for science in the 21st century. To meet this challenge, we need to know how plants both respond to and protect against temperature changes. The same issues apply to other environmental factors across all biological systems, therefore, understanding this is a major goal for experimental and theoretical scientists. In recent years reductionist science, where biological pathways are studied in isolation, has not identified plant temperature sensors. It also cannot address how temperature effects that cross the many, interacting pathways, which we now know are involved. We take a multi-disciplinary approach and focus our studies on one of the best characterised signalling networks in plants. We will combine expertise from biologists that specialise in molecular and cell biology, plant physiology and climate change; and theoreticians that specialise in statistical, mathematical and computer science approaches to analyse and model biological systems. To provide vital independent expertise and avenues for collaboration we have invited a panel of experts from industry and academia, to meet with us on a yearly basis. We will analyse how temperature influences the interlinked pathways of light, 24-hour clock and cold signalling. We conduct our studies in the model plant Arabidopsis as it offers several advantages: 1. we have already developed the most advanced mathematical model in plant signalling, for a section of our network; 2. our network pathways are already well defined, with many useful tools and resources in Arabidopsis; and 3. the pathways in plants of economic and ecological importance appear to be closely related, so our results can readily be translated to other species. To capture a meaningful view of how temperature-regulated molecular events translate to important physiological traits we will conduct our analysis at molecular, cellular and whole plant levels. Our first task will be to expand our model with the pre-existing knowledge for the rest of our network. We will measure the response of all our network components over a range of temperatures and integrate these data into our preliminary model. This, approach will locate the temperature-sensitive and -tolerant parts of the network in an unbiased fashion: the important point is that the temperature responses that matter will not be caused by single components, but by many acting together. We cannot understand this complexity without computer models. Our models will help inform our experiments, to home in on the molecular mechanisms that control the network's properties. Finally, we will test the role of important network components in controlling agriculturally and ecologically relevant traits in whole plants. In summary, this project will develop the most advanced signalling network model in plants, define network features that permit responsiveness and tolerance, and identify plant temperature sensors. Our work will address fundamental questions in biology and create the knowledge base required to meet the challenge to develop crops better able to withstand a range of climatic conditions. Our multidisciplinary collaboration will also provide training and extension of 'Systems Biology' approaches to universities with no current expertise and to our industrial collaborators.
农业是欧洲工业的支柱,年营业额超过1万亿欧元,对我们的生存至关重要。随着资源的减少和世界人口的增长,我们对农业的需求也将增加。随着未来几十年的气候变化,目前的趋势表明全球气温将会上升。不仅平均气温将发生变化,天气系统也变得更加不可预测:今年史无前例的霜冻导致加州柑橘歉收,给该行业造成了4.5亿美元的损失。农业需求的增加以及全球气候和极端天气的变化是21世纪科学面临的重大挑战。为了应对这一挑战,我们需要知道植物如何对温度变化做出反应并对其进行保护。同样的问题也适用于所有生物系统中的其他环境因素,因此,理解这一点是实验和理论科学家的主要目标。近些年来,对生物途径进行孤立研究的简化论科学并没有发现植物温度传感器。它也不能解决如何跨越我们现在知道涉及的许多相互作用的途径的温度影响。我们采取多学科方法,将我们的研究重点放在植物中最具特色的信号网络之一上。我们将结合专门研究分子和细胞生物学、植物生理学和气候变化的生物学家,以及专门研究统计、数学和计算机科学方法来分析和模拟生物系统的理论家的专业知识。为了提供重要的独立专业知识和合作渠道,我们邀请了一个由工业界和学术界的专家组成的小组,每年与我们会面。我们将分析温度如何影响光、24小时时钟和冷信号的相互关联的路径。我们在模式植物拟南芥中进行研究,因为它提供了几个优点:1.我们已经为我们网络的一部分开发了最先进的植物信号传递数学模型;2.我们的网络通路已经被很好地定义,在拟南芥中有许多有用的工具和资源;以及3.在具有经济和生态重要性的植物中的通路似乎是密切相关的,所以我们的结果可以很容易地翻译到其他物种。为了捕捉到温度调节的分子事件如何转化为重要的生理特性的有意义的观点,我们将在分子、细胞和整个植物水平上进行分析。我们的首要任务将是利用网络其余部分的现有知识来扩展我们的模型。我们将测量所有网络组件在一定温度范围内的响应,并将这些数据整合到我们的初步模型中。这种方法将以不偏不倚的方式定位网络中对温度敏感和耐受的部分:重要的一点是,重要的温度响应不会由单个组件引起,而是由多个组件共同作用引起。如果没有计算机模型,我们无法理解这种复杂性。我们的模型将有助于为我们的实验提供信息,以深入了解控制网络特性的分子机制。最后,我们将测试重要的网络组件在控制整个植物的农业和生态相关性状方面的作用。总而言之,该项目将开发植物中最先进的信号网络模型,定义允许响应和耐受的网络功能,并识别植物温度传感器。我们的工作将解决生物学中的基本问题,并创建所需的知识库,以迎接发展能够更好地抵御各种气候条件的作物的挑战。我们的多学科合作还将为目前没有专业知识的大学和我们的行业合作者提供培训和推广“系统生物学”的方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops.
- DOI:10.1038/msb.2012.6
- 发表时间:2012-03-06
- 期刊:
- 影响因子:9.9
- 作者:Pokhilko, Alexandra;Fernandez, Aurora Pinas;Edwards, Kieron D.;Southern, Megan M.;Halliday, Karen J.;Millar, Andrew J.
- 通讯作者:Millar, Andrew J.
Arabidopsis cell expansion is controlled by a photothermal switch.
- DOI:10.1038/ncomms5848
- 发表时间:2014-09-26
- 期刊:
- 影响因子:16.6
- 作者:Johansson, Henrik;Jones, Harriet J.;Foreman, Julia;Hemsted, Joseph R.;Stewart, Kelly;Grima, Ramon;Halliday, Karen J.
- 通讯作者:Halliday, Karen J.
Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response.
- DOI:10.1186/gb-2014-15-3-r45
- 发表时间:2014-03-03
- 期刊:
- 影响因子:12.3
- 作者:Sidaway-Lee K;Costa MJ;Rand DA;Finkenstadt B;Penfield S
- 通讯作者:Penfield S
Strengths and limitations of period estimation methods for circadian data.
- DOI:10.1371/journal.pone.0096462
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Zielinski T;Moore AM;Troup E;Halliday KJ;Millar AJ
- 通讯作者:Millar AJ
Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.
- DOI:10.15252/msb.20145766
- 发表时间:2015-01-19
- 期刊:
- 影响因子:9.9
- 作者:Seaton DD;Smith RW;Song YH;MacGregor DR;Stewart K;Steel G;Foreman J;Penfield S;Imaizumi T;Millar AJ;Halliday KJ
- 通讯作者:Halliday KJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Penfield其他文献
Steven Penfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Penfield', 18)}}的其他基金
Competitive trans-generational control of seed dormancy via stable inheritance of gametophytic epigenomes
通过配子体表观基因组的稳定遗传对种子休眠的竞争性跨代控制
- 批准号:
BB/X015793/1 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Unravelling the effect of winter warming on flowering time, flower fertility and crop yield
揭示冬季变暖对开花时间、花卉肥力和作物产量的影响
- 批准号:
BB/W000415/1 - 财政年份:2022
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
The maternal control of progeny seed physiology
后代种子生理的母体控制
- 批准号:
BB/T003030/1 - 财政年份:2020
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Integration of seasonal signals through a two gene mutual repression switch in flower buds
通过花蕾中两个基因相互抑制开关整合季节信号
- 批准号:
BB/S003878/1 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Control of seed size and yield by vernalisation
通过春化控制种子大小和产量
- 批准号:
BB/R004196/1 - 财政年份:2018
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Genomic approaches to increasing resilience in oilseed rape seedling establishment in the Yangtze River basin
提高长江流域油菜幼苗恢复能力的基因组方法
- 批准号:
BB/P022677/1 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
China Partnering Award: towards a common toolkit for oilseed rape research
中国合作奖:建立油菜研究通用工具包
- 批准号:
BB/P025706/1 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Automation of seed performance testing
种子性能测试自动化
- 批准号:
BB/R012369/1 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Exploiting seed coat properties to improve uniformity and resilience in Brassica seed vigour
利用种皮特性提高芸苔属种子活力的均匀性和弹性
- 批准号:
BB/M017869/1 - 财政年份:2015
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
The role of the oxylipin OPDA in the seasonal sensitivity of seed dormancy
氧脂素 OPDA 在种子休眠季节敏感性中的作用
- 批准号:
BB/J000949/2 - 财政年份:2014
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
相似国自然基金
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
过表达CX45联合HCN4基因转染对起搏细胞自律性的影响
- 批准号:81170174
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
慢病毒转染嵌合体HCN1+4拼接基因构建生物起搏细胞
- 批准号:81070139
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
- 批准号:20772047
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
TB方法在有机和生物大分子体系计算研究中的应用
- 批准号:20773047
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
相似海外基金
Regulation in biological signalling networks
生物信号网络的调控
- 批准号:
283343-2008 - 财政年份:2009
- 资助金额:
$ 54.89万 - 项目类别:
Discovery Grants Program - Individual
Regulation in biological signalling networks
生物信号网络的调控
- 批准号:
283343-2008 - 财政年份:2008
- 资助金额:
$ 54.89万 - 项目类别:
Discovery Grants Program - Individual
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005237/1 - 财政年份:2008
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005318/1 - 财政年份:2008
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Regulation of Biological Signalling by Temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005261/1 - 财政年份:2008
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005296/1 - 财政年份:2008
- 资助金额:
$ 54.89万 - 项目类别:
Research Grant
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8436650 - 财政年份:2007
- 资助金额:
$ 54.89万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8996688 - 财政年份:2007
- 资助金额:
$ 54.89万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8793797 - 财政年份:2007
- 资助金额:
$ 54.89万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8608579 - 财政年份:2007
- 资助金额:
$ 54.89万 - 项目类别: