Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
基本信息
- 批准号:BB/F005318/1
- 负责人:
- 金额:$ 96.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Agriculture underpins European industry with an annual turnover of more than ¤1 trillion and is essential for our survival. As resources dwindle and world populations grow, our demands on agriculture will also increase. As climate changes in the coming decades, current trends suggest that global temperatures will rise. Not only is mean temperature set to change but weather systems are also becoming less predictable: an unprecedented frost this year resulted in a failure of the Californian citrus crop, costing the industry $450 million. The combination of increased demand on agriculture and the changes in global climate and weather extremes represent a major challenge for science in the 21st century. To meet this challenge, we need to know how plants both respond to and protect against temperature changes. The same issues apply to other environmental factors across all biological systems, therefore, understanding this is a major goal for experimental and theoretical scientists. In recent years reductionist science, where biological pathways are studied in isolation, has not identified plant temperature sensors. It also cannot address how temperature effects that cross the many, interacting pathways, which we now know are involved. We take a multi-disciplinary approach and focus our studies on one of the best characterised signalling networks in plants. We will combine expertise from biologists that specialise in molecular and cell biology, plant physiology and climate change; and theoreticians that specialise in statistical, mathematical and computer science approaches to analyse and model biological systems. To provide vital independent expertise and avenues for collaboration we have invited a panel of experts from industry and academia, to meet with us on a yearly basis. We will analyse how temperature influences the interlinked pathways of light, 24-hour clock and cold signalling. We conduct our studies in the model plant Arabidopsis as it offers several advantages: 1. we have already developed the most advanced mathematical model in plant signalling, for a section of our network; 2. our network pathways are already well defined, with many useful tools and resources in Arabidopsis; and 3. the pathways in plants of economic and ecological importance appear to be closely related, so our results can readily be translated to other species. To capture a meaningful view of how temperature-regulated molecular events translate to important physiological traits we will conduct our analysis at molecular, cellular and whole plant levels. Our first task will be to expand our model with the pre-existing knowledge for the rest of our network. We will measure the response of all our network components over a range of temperatures and integrate these data into our preliminary model. This, approach will locate the temperature-sensitive and -tolerant parts of the network in an unbiased fashion: the important point is that the temperature responses that matter will not be caused by single components, but by many acting together. We cannot understand this complexity without computer models. Our models will help inform our experiments, to home in on the molecular mechanisms that control the network's properties. Finally, we will test the role of important network components in controlling agriculturally and ecologically relevant traits in whole plants. In summary, this project will develop the most advanced signalling network model in plants, define network features that permit responsiveness and tolerance, and identify plant temperature sensors. Our work will address fundamental questions in biology and create the knowledge base required to meet the challenge to develop crops better able to withstand a range of climatic conditions. Our multidisciplinary collaboration will also provide training and extension of 'Systems Biology' approaches to universities with no current expertise and to our industrial collaborators.
农业是欧洲工业的支柱,年营业额超过 1 万亿欧元,对我们的生存至关重要。随着资源的减少和世界人口的增长,我们对农业的需求也将增加。随着未来几十年的气候变化,目前的趋势表明全球气温将会上升。不仅平均气温将发生变化,天气系统也变得越来越不可预测:今年前所未有的霜冻导致加州柑橘作物歉收,给该行业造成了 4.5 亿美元的损失。农业需求的增加与全球气候和极端天气的变化相结合,构成了 21 世纪科学面临的重大挑战。为了应对这一挑战,我们需要了解植物如何应对和抵御温度变化。同样的问题也适用于所有生物系统的其他环境因素,因此,理解这一点是实验和理论科学家的主要目标。近年来,孤立地研究生物途径的还原论科学尚未发现植物温度传感器。它也无法解决温度如何影响我们现在所知的许多相互作用的途径。我们采用多学科方法,将研究重点放在植物中特征最好的信号网络之一。我们将结合分子和细胞生物学、植物生理学和气候变化方面的生物学家的专业知识;以及专门研究统计、数学和计算机科学方法来分析和建模生物系统的理论家。为了提供重要的独立专业知识和合作途径,我们邀请了来自工业界和学术界的专家小组每年与我们会面。我们将分析温度如何影响光、24 小时时钟和冷信号的相互关联的路径。我们在模型植物拟南芥中进行研究,因为它具有以下几个优点: 1. 我们已经为我们网络的一部分开发了植物信号传导领域最先进的数学模型; 2. 我们的网络路径已经明确,在拟南芥中有许多有用的工具和资源; 3.具有经济和生态重要性的植物中的途径似乎密切相关,因此我们的结果可以很容易地转化为其他物种。为了获得关于温度调节分子事件如何转化为重要生理特征的有意义的观点,我们将在分子、细胞和整个植物水平上进行分析。我们的首要任务是利用网络其余部分的现有知识来扩展我们的模型。我们将测量所有网络组件在一定温度范围内的响应,并将这些数据集成到我们的初步模型中。这种方法将以公正的方式定位网络的温度敏感和耐受部分:重要的一点是,重要的温度响应不是由单个组件引起的,而是由许多组件共同作用引起的。如果没有计算机模型,我们就无法理解这种复杂性。我们的模型将有助于为我们的实验提供信息,以了解控制网络特性的分子机制。最后,我们将测试重要网络组件在控制整个植物的农业和生态相关性状中的作用。总之,该项目将开发植物中最先进的信号网络模型,定义允许响应性和耐受性的网络功能,并识别植物温度传感器。我们的工作将解决生物学中的基本问题,并创建应对挑战所需的知识库,以开发能够更好地承受各种气候条件的作物。我们的多学科合作还将为目前没有专业知识的大学和我们的工业合作者提供“系统生物学”方法的培训和扩展。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures.
- DOI:10.1038/msb.2013.7
- 发表时间:2013
- 期刊:
- 影响因子:9.9
- 作者:Gould, Peter D.;Ugarte, Nicolas;Domijan, Mirela;Costa, Maria;Foreman, Julia;MacGregor, Dana;Rose, Ken;Griffiths, Jayne;Millar, Andrew J.;Finkenstaedt, Baerbel;Penfield, Steven;Rand, David A.;Halliday, Karen J.;Hall, Anthony J. W.
- 通讯作者:Hall, Anthony J. W.
A Distorted Circadian Clock Causes Early Flowering and Temperature-Dependent Variation in Spike Development in the Eps-3Am Mutant of Einkorn Wheat
- DOI:10.1534/genetics.113.158444
- 发表时间:2014-04-01
- 期刊:
- 影响因子:3.3
- 作者:Gawronski, Piotr;Ariyadasa, Ruvini;Schnurbusch, Thorsten
- 通讯作者:Schnurbusch, Thorsten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Hall其他文献
Monthly Journal – International Orthopaedics
- DOI:
10.1007/s00264-010-1184-4 - 发表时间:
2010-12-12 - 期刊:
- 影响因子:2.600
- 作者:
Marko Pećina;Anthony Hall - 通讯作者:
Anthony Hall
Endogenous plant rhythms
内源植物节律
- DOI:
10.1002/9780470988527 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Anthony Hall;Harriet McWatterss - 通讯作者:
Harriet McWatterss
Allogeneic dendritic cell (DC) vaccination as an “off the shelf” treatment to prevent or delay relapse in elderly acute myeloid leukemia patients: results of Phase I/IIa safety and feasibility study
- DOI:
10.1186/2051-1426-1-s1-p205 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:10.600
- 作者:
Tanja de Gruijl;Saskia Santegoeds;Sandra van Wetering;Satwinder Kaur Singh;Anthony Hall;Arjan A van de Loosdrecht;Ada Kruisbeek - 通讯作者:
Ada Kruisbeek
Comment on Lee et al.: A comparative study of Colles’ fractures in patients between 50 and 70 years of age: percutaneous K-wiring versus volar locking plating
- DOI:
10.1007/s00264-012-1498-5 - 发表时间:
2012-02-03 - 期刊:
- 影响因子:2.600
- 作者:
Grey Giddins;Anthony Hall - 通讯作者:
Anthony Hall
The relationship between geothermal gradient and the composition of granitic magmas in orogenic belts
- DOI:
10.1007/bf00643333 - 发表时间:
1971-01-01 - 期刊:
- 影响因子:3.700
- 作者:
Anthony Hall - 通讯作者:
Anthony Hall
Anthony Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Hall', 18)}}的其他基金
Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
- 批准号:
2326720 - 财政年份:2024
- 资助金额:
$ 96.82万 - 项目类别:
Standard Grant
CAS: Promoting Selective CO2 Electroreduction by Active Site Engineering
CAS:通过活性位点工程促进选择性 CO2 电还原
- 批准号:
2102648 - 财政年份:2021
- 资助金额:
$ 96.82万 - 项目类别:
Standard Grant
CAREER: Room Temperature Electrochemical Synthesis of Ordered Intermetallic Nanomaterials
职业:有序金属间纳米材料的室温电化学合成
- 批准号:
2047019 - 财政年份:2021
- 资助金额:
$ 96.82万 - 项目类别:
Continuing Grant
A proof of concept that RECQ 7 can be used as a tool to increase recombination
RECQ 7 可用作增加重组的工具的概念证明
- 批准号:
BB/T011963/1 - 财政年份:2021
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Using REC Q7 to drive increases in recombination in crop genomes
使用 REC Q7 推动作物基因组重组的增加
- 批准号:
BB/T010096/1 - 财政年份:2019
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
18-BTT: A PATHWAY TO THE EXPLOITATION OF EPIGENETIC VARIATION IN UK, US AND INTERNATIONAL BREEDING PROGRAMMES
18-BTT:英国、美国和国际育种计划利用表观遗传变异的途径
- 批准号:
BB/S020942/1 - 财政年份:2019
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
China Partnering Awards - Forge a long-term UK-China relationship in phenotyping, Agri-Tech innovation and crop research for Rice and Wheat
中国合作奖 - 在水稻和小麦的表型、农业技术创新和作物研究方面建立长期的英中关系
- 批准号:
BB/R021376/1 - 财政年份:2018
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Base Metal Rich Pd-Bi Ordered Intermetallics for the Oxygen Reduction Reaction
用于氧还原反应的富贱金属 Pd-Bi 有序金属间化合物
- 批准号:
1764310 - 财政年份:2018
- 资助金额:
$ 96.82万 - 项目类别:
Standard Grant
A computational cloud framework for the study of gene families
用于研究基因家族的计算云框架
- 批准号:
BB/N023145/1 - 财政年份:2017
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
14 ERA-CAPS: INvestigating TRiticeae EPIgenomes for Domestication (INTREPID)
14 ERA-CAPS:研究小麦科 EPI 基因组用于驯化 (INTREPID)
- 批准号:
BB/N005104/2 - 财政年份:2016
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
相似国自然基金
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
过表达CX45联合HCN4基因转染对起搏细胞自律性的影响
- 批准号:81170174
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
慢病毒转染嵌合体HCN1+4拼接基因构建生物起搏细胞
- 批准号:81070139
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
- 批准号:20772047
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
TB方法在有机和生物大分子体系计算研究中的应用
- 批准号:20773047
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
相似海外基金
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005296/2 - 财政年份:2011
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Regulation in biological signalling networks
生物信号网络的调控
- 批准号:
283343-2008 - 财政年份:2009
- 资助金额:
$ 96.82万 - 项目类别:
Discovery Grants Program - Individual
Regulation in biological signalling networks
生物信号网络的调控
- 批准号:
283343-2008 - 财政年份:2008
- 资助金额:
$ 96.82万 - 项目类别:
Discovery Grants Program - Individual
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005237/1 - 财政年份:2008
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Regulation of Biological Signalling by Temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005261/1 - 财政年份:2008
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Regulation of biological signalling by temperature (ROBUST)
通过温度调节生物信号(稳健)
- 批准号:
BB/F005296/1 - 财政年份:2008
- 资助金额:
$ 96.82万 - 项目类别:
Research Grant
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8436650 - 财政年份:2007
- 资助金额:
$ 96.82万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8996688 - 财政年份:2007
- 资助金额:
$ 96.82万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8793797 - 财政年份:2007
- 资助金额:
$ 96.82万 - 项目类别:
Regulation of Cardiac Calcium Channels by an Autoinhibitory Signalling Complex
自抑制信号复合物对心脏钙通道的调节
- 批准号:
8608579 - 财政年份:2007
- 资助金额:
$ 96.82万 - 项目类别: