Unravelling the molecular basis of subunit specificity in bacterial pilus assembly mechanisms

揭示细菌菌毛组装机制中亚基特异性的分子基础

基本信息

  • 批准号:
    BB/F012284/1
  • 负责人:
  • 金额:
    $ 55.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

It has been known for more than half a century that some pathogenic bacteria (e.g. Escherichia coli and Salmonella enterica) produce hair-like structures on their surfaces that promote haemagglutination. These 'pili' or 'fimbriae' contain at their tip a special protein molecule, called an adhesin, which allows the bacteria to attach to the host cell surface, thereby initiating the process of infection. These hair-like structures are formed from the assembly of hundreds of copies of protein subunits with similar structure into a long polymer chain linked by non-covalent interactions between each subunit. A complex folding and assembly machinery known as the chaperone-usher pathway is responsible for the assembly of these pili, typified by the P pili of uropathogenic E. coli. Key components of this pathway include (i) a specific chaperone which is needed to fold the pilus subunit into an assembly-competent conformation and to prevent premature subunit assembly in the periplasmic space; (ii) the pilus subunits themselves which, in the case of P pili, involves six different subunit types; and (iii) an outer membrane-embedded usher protein, which acts as the assembly platform where chaperone:pilus subunit complexes are brought to the basal end of the growing pilus for subsequent incorporation into the growing fibre. In a manner that is currently not understood, and is entirely independent of ATP, the usher catalyzes pilus assembly, adds a defined, specially chosen subunit to the base of the growing pilus, and extrudes it to the outer surface of the bacterium. The usher also serves as an anchor, tethering the pilus to the bacterial surface, arming the bacterium for attack. In recent years the X-ray structures of several pilus chaperones have been elucidated, along with many pilus subunits (known as pilins). Fascinatingly, these studies have shown that pilins have a common structure, based on an immunoglobulin (Ig) fold. However, whilst the canonical Ig fold contains seven ?-strands, the pilins have only six strands and their structure is thus incomplete and unstable. One role of the chaperone is to donate a ?-strand to the pilus subunit, temporarily completing its content of ?-strands. During pilus assembly the chaperone's ?-stand is then displaced from its binding site by the incoming pilin subunit, which forms a new ?-strand from its initially disordered N-terminal region (known as the N-terminal extension (Nte)), resulting in a very stable, intermolecular chain of Ig molecules. The ordered assembly of bacterial pili provides a fascinating problem in structural biology and molecular recognition that has far-reaching impact. First, it poses important fundamental questions about molecular self-assembly mechanisms and asks to what extent these are dictated by the biophysical properties of the amino acid chain (its sequence, or the kinetics or thermodynamics of the interactions) and how these are controlled, modulated and/or coordinated in vivo. Secondly, and equally importantly, elucidation of the molecular mechanism of pilus formation has immense importance for the possible development of new anti-microbial agents against bacterial infection mediated by pili. In this proposal we describe a series of experiments involving three applicants with complementary expertise that aim to reveal how proteins assemble into pili in unprecedented detail. Specifically, our aims are to determine the role of the N-terminal extension (Nte), the chaperone:subunit complex, and the soluble N-terminal domain of the membrane-bound usher in defining and controlling the order of subunit-assembly. Finally using our ability to purify intact functional usher protein we aim to develop an assay capable of providing the first insights into pilus assembly at a membrane surface in vitro.
半个多世纪以来,人们已经知道一些致病菌(如大肠杆菌和肠炎沙门氏菌)在其表面产生毛发状结构,促进血液凝集。这些“菌毛”或“菌毛”的尖端含有一种特殊的蛋白质分子,称为黏附素,它允许细菌附着在宿主细胞表面,从而启动感染过程。这些毛发状结构是由数百个具有相似结构的蛋白质亚基拷贝组装成一个长长的聚合物链,通过每个亚基之间的非共价相互作用连接而成。一种复杂的折叠和组装机制,称为伴侣-引导通路,负责这些菌毛的组装,以尿路致病性大肠杆菌的P菌毛为典型。该途径的关键成分包括(i)一个特定的伴侣蛋白,它需要将毛囊亚基折叠成一个能够组装的构象,并防止亚基在质周空间过早组装;(ii)毛菌亚基本身,在毛杆菌的情况下,涉及六种不同的亚基类型;(iii)外膜嵌入的引导蛋白,它作为组装平台,将伴侣蛋白:菌毛亚基复合物带到生长的菌毛的基端,随后并入生长的纤维中。以一种目前尚不清楚的方式,并且完全独立于ATP, usher催化菌毛组装,在生长的菌毛的基部添加一个明确的,特别选择的亚基,并将其挤压到细菌的外表面。引子也起到锚的作用,将菌毛固定在细菌表面,武装细菌进行攻击。近年来,一些毛蕊伴侣的x射线结构已经被阐明,以及许多毛蕊亚基(称为毛蕊)。令人着迷的是,这些研究表明,pilins具有基于免疫球蛋白(Ig)折叠的共同结构。然而,虽然标准的Ig折叠包含七个?而柱状结构只有6股,因此结构不完整且不稳定。监护人的一个角色是捐赠一枚?-链转移到菌毛亚基,暂时完成-链的内容。在皮勒斯集会期间,监护人?然后-stand被进入的pilin亚基从其结合位点移位,形成新的?从其最初无序的n端区域(称为n端延伸(Nte))中分离出-链,从而形成非常稳定的分子间Ig分子链。细菌毛的有序组装是结构生物学和分子识别领域的一个重要问题,具有深远的影响。首先,它提出了关于分子自组装机制的重要基本问题,并询问这些问题在多大程度上由氨基酸链的生物物理特性(其序列,或相互作用的动力学或热力学)决定,以及这些特性如何在体内被控制、调节和/或协调。其次,同样重要的是,阐明菌毛形成的分子机制对开发新的抗菌剂具有重要意义,可以对抗由菌毛介导的细菌感染。在这个提案中,我们描述了一系列的实验涉及三个申请人与互补的专业知识,旨在揭示蛋白质如何组装成毛前所未有的细节。具体来说,我们的目的是确定n端延伸(Nte),伴侣:亚基复合物和膜结合的可溶性n端结构域在定义和控制亚基组装顺序中的作用。最后,利用我们纯化完整功能usher蛋白的能力,我们的目标是开发一种能够首次深入了解体外膜表面菌毛组装的检测方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An in vivo platform for identifying inhibitors of protein aggregation.
  • DOI:
    10.1038/nchembio.1988
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Saunders JC;Young LM;Mahood RA;Jackson MP;Revill CH;Foster RJ;Smith DA;Ashcroft AE;Brockwell DJ;Radford SE
  • 通讯作者:
    Radford SE
Second order rate constants of donor-strand exchange reveal individual amino acid residues important in determining the subunit specificity of pilus biogenesis.
  • DOI:
    10.1007/s13361-011-0146-4
  • 发表时间:
    2011-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Leney, Aneika C.;Phan, Gilles;Allen, William;Verger, Denis;Waksman, Gabriel;Radford, Sheena E.;Ashcroft, Alison E.
  • 通讯作者:
    Ashcroft, Alison E.
The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.
ESI-MS 揭示了伴侣蛋白-亚基引导结构域相互作用在细菌菌毛生物发生机制中的作用。
  • DOI:
    10.1074/mcp.m111.015289
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morrissey B
  • 通讯作者:
    Morrissey B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheena Radford其他文献

How Well Evolved Is The Folding Code?
  • DOI:
    10.1016/j.bpj.2008.12.2992
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sheena Radford
  • 通讯作者:
    Sheena Radford
Force Triggered Dissociation of the Highly Avid E9:Im9 Complex
  • DOI:
    10.1016/j.bpj.2012.11.3174
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    David Brockwell;Oliver Farrance;Renata Kaminska;Sasha Derrington;Colin Kleanthous;Sheena Radford
  • 通讯作者:
    Sheena Radford
Building the Bacterial Cell Wall: How Do Bacteria Do It?
  • DOI:
    10.1016/j.bpj.2020.11.867
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Sheena Radford
  • 通讯作者:
    Sheena Radford

Sheena Radford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheena Radford', 18)}}的其他基金

Dynamic allostery of Sec machinery in protein transport and folding
蛋白质运输和折叠中Sec机械的动态变构
  • 批准号:
    BB/T008059/1
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
How do ATP-independent chaperones assist OMP folding and assembly? Insights from mass spectrometry and other approaches
不依赖 ATP 的分子伴侣如何协助 OMP 折叠和组装?
  • 批准号:
    BB/P000037/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
The structure and function of the beta-barrel assembly machinery: an Achilles heel of Gram-negative pathogens
β-桶组装机制的结构和功能:革兰氏阴性病原体的致命弱点
  • 批准号:
    MR/P018491/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
Compatibility rules for glycosaminoglycan-amyloid interactions
糖胺聚糖-淀粉样蛋白相互作用的相容性规则
  • 批准号:
    BB/K01451X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
Ensemble and single molecule analysis of protein translocation
蛋白质易位的整体和单分子分析
  • 批准号:
    BB/I006737/1
  • 财政年份:
    2011
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
Investigating E. coli cell envelope proteins and processes through colicin intoxication
通过大肠菌素中毒研究大肠杆菌细胞包膜蛋白和过程
  • 批准号:
    BB/G019452/1
  • 财政年份:
    2009
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Unravelling the molecular basis of fidelity in mRNA splicing
揭示 mRNA 剪接保真度的分子基础
  • 批准号:
    2603123
  • 财政年份:
    2021
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Studentship
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
  • 批准号:
    10224747
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
  • 批准号:
    10034691
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
  • 批准号:
    10687123
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
  • 批准号:
    10460229
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
  • 批准号:
    10372247
  • 财政年份:
    2020
  • 资助金额:
    $ 55.21万
  • 项目类别:
Unravelling the molecular basis of amyotrophic lateral sclerosis
揭示肌萎缩侧索硬化症的分子基础
  • 批准号:
    nhmrc : GNT1092023
  • 财政年份:
    2016
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Early Career Fellowships
Unravelling the molecular basis of amyotrophic lateral sclerosis
揭示肌萎缩侧索硬化症的分子基础
  • 批准号:
    nhmrc : 1092023
  • 财政年份:
    2016
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Early Career Fellowships
Unravelling the molecular basis of functional specialization amongst Arabidopsis thaliana poly(A) polymerase isoforms
揭示拟南芥多聚(A)聚合酶亚型功能特化的分子基础
  • 批准号:
    183792553
  • 财政年份:
    2010
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grants
Unravelling the molecular genetic basis of Striga resistance in cereals: integrating Quantitative Trait Loci (QTL) and genomic approaches.
揭示谷物中独脚金抗性的分子遗传基础:整合数量性状基因座(QTL)和基因组方法。
  • 批准号:
    BB/H531735/1
  • 财政年份:
    2010
  • 资助金额:
    $ 55.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了