Mechanics and energetics of stable bipedal locomotion in uneven terrain: Does a trade-off exist between economy and stability?

不平坦地形中稳定双足运动的力学和能量学:经济性和稳定性之间是否存在权衡?

基本信息

  • 批准号:
    BB/H005838/1
  • 负责人:
  • 金额:
    $ 58.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Studies of walking and running in humans and birds have revealed that all two legged animals (bipeds) move in similar ways over level ground, despite differences in leg anatomy. This finding has led to elegantly simple theoretical models for economic walking and running. These models have inspired technological advances such as the fastest running tracks, the most economic bipedal robots, and simple prosthetics devices, including the Cheetah Flex-Foot worn by track athlete Oscar Pistorious. Despite these advances, the design of prosthetics that can move with both stability and economy over uneven terrain remains a challenge. Walking and running in natural terrain requires frequent adjustment for bumps, steps, holes and obstacles. Yet, current prosthetic devices for human locomotion perform poorly over uneven terrain. Although the flex-foot prosthetic worn by Oscar Pistorious provides high economy, allowing him to run long distances, it does not adjust for variations in terrain such as kerbs or stairs. Advances such as motorised prosthetic devices can improve mobility in uneven terrain, but currently have limited use because they consume too much energy and run out of battery power quickly. New prosthetics and other mobility aids that perform well in varied terrain could vastly improve quality of life for those with limited mobility, including amputees and ageing individuals at risk for falls. In comparison to these technologies, humans and birds achieve remarkable stability and economy of movement in varied terrain. However, we understand very little about how they accomplish this. Current models of walking and running are based mostly on studies of movement over completely smooth, uniform terrain (such as a track or treadmill), which rarely exist in nature. It has long been supposed that a trade-off exists between economy and stability of locomotion. This idea has never been tested because so little research exists on stability of walking and running. This project will address this problem by by comparing stabilising strategies and energy cost of locomotion among six species of ground birds. We will measure mechanics, stability and energetic cost as birds walk and run over uneven terrain conditions. This will reveal how bipeds choose among different movement strategies depending on terrain condition, speed and gait. Ground birds are ideal study animals for this research because they are diverse bipedal athletes, live in broad range of habitats, and span a large size range: from quail under 100 grams to ostrich over 100 kilograms. Through study of ground birds, this project will develop simple models for stable bipedal locomotion that apply to a broad range of animals and terrain conditions. The models will reveal basic principles for stability and economy that could directly impact upon the design of prosthetics, orthotics and legged robots. One important observation is that small birds walk and run with a crouched, bent-leg posture, and large birds move with a relatively straight-leg posture. The difference in leg posture and anatomy likely reflects greater adaptation for stability in small birds and economy in large birds. For small and large animals moving in the same terrain, any change in terrain height will be a larger fraction of a small animal's leg length. Consequently, the world is a relatively 'rough' place for small animals, requiring robust stability. This project will compare stability strategies used by small and large birds and determine whether small birds are more stable. This research will reveal how bipeds walk and run over uneven terrain without falls or injury. Mobility without falls and injury is particularly important for the wellbeing of ageing and gait impaired individuals. The findings are likely to have high impact in these areas, inspiring innovation in human fall prevention, gait rehabilitation, and the design of prosthetics, orthotics and other mobility assistance devices.
对人类和鸟类行走和奔跑的研究表明,所有两足动物(两足动物)在平地上的移动方式相似,尽管腿的解剖结构不同。这一发现导致了经济步行和跑步的优雅简单的理论模型。这些模型激发了技术进步,例如最快的跑道,最经济的双足机器人和简单的假肢设备,包括田径运动员奥斯卡·皮斯托瑞斯(Oscar Pistorious)佩戴的Cheetah Flex-Foot。尽管取得了这些进展,但设计能够在不平坦地形上稳定和经济地移动的假肢仍然是一个挑战。在自然地形中行走和跑步需要经常调整颠簸、台阶、洞和障碍物。然而,目前用于人类运动的假肢装置在不平坦的地形上表现不佳。虽然奥斯卡·皮斯托瑞斯所穿的柔性脚假肢提供了很高的经济性,使他能够跑很长的距离,但它不能适应地形的变化,如路边石或楼梯。电动假肢设备等先进技术可以提高在不平坦地形中的机动性,但目前使用有限,因为它们消耗太多能量,电池电量很快就会耗尽。在各种地形中表现良好的新型假肢和其他助行器可以大大改善行动不便者的生活质量,包括截肢者和有福尔斯风险的老年人。与这些技术相比,人类和鸟类在各种地形中实现了显着的稳定性和运动经济性。然而,我们对他们如何做到这一点知之甚少。目前的步行和跑步模型大多基于对完全平滑、均匀地形(如跑道或跑步机)上运动的研究,而这些地形在自然界中很少存在。长期以来,人们一直认为在经济性和运动稳定性之间存在权衡。这个想法从未被测试过,因为很少有关于行走和跑步稳定性的研究。本项目将通过比较六种地面鸟类的稳定策略和运动的能量成本来解决这个问题。我们将测量鸟类在不平坦地形条件下行走和奔跑时的力学、稳定性和能量消耗。这将揭示两足动物如何根据地形条件、速度和步态在不同的运动策略中进行选择。地面鸟类是这项研究的理想研究动物,因为它们是不同的两足运动员,生活在广泛的栖息地,并且跨越了很大的尺寸范围:从100克以下的鹌鹑到100公斤以上的鸵鸟。通过对地面鸟类的研究,该项目将开发适用于各种动物和地形条件的稳定双足运动的简单模型。这些模型将揭示稳定性和经济性的基本原则,这些原则可能直接影响假肢、矫形器和腿式机器人的设计。一个重要的观察结果是,小型鸟类以蹲下的腿姿势行走和奔跑,而大型鸟类则以相对直腿的姿势移动。腿部姿势和解剖结构的差异可能反映了小型鸟类对稳定性的更大适应性和大型鸟类的经济性。对于在同一地形中移动的小型和大型动物,地形高度的任何变化将是小型动物腿长的较大部分。因此,对于小动物来说,世界是一个相对“粗糙”的地方,需要强大的稳定性。该项目将比较小型和大型鸟类使用的稳定策略,并确定小型鸟类是否更稳定。这项研究将揭示两足动物如何在不平坦的地形上行走和奔跑而不福尔斯或受伤。没有福尔斯跌倒和受伤的活动对于老年人和步态障碍者的健康特别重要。这些发现可能会在这些领域产生很大的影响,激发人类跌倒预防,步态康复以及假肢,矫形器和其他移动辅助设备的设计创新。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion?
Understanding Mammalian Locomotion - Concepts and Applications
了解哺乳动物的运动 - 概念和应用
  • DOI:
    10.1002/9781119113713.ch11
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daley M
  • 通讯作者:
    Daley M
Scaling of avian bipedal locomotion: How does body size influence gait dynamics in level and uneven terrain?
鸟类双足运动的缩放:身体尺寸如何影响水平和不平坦地形中的步态动力学?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Monica Daley (Author)
  • 通讯作者:
    Monica Daley (Author)
Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.
  • DOI:
    10.1242/jeb.102640
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Birn-Jeffery AV;Hubicki CM;Blum Y;Renjewski D;Hurst JW;Daley MA
  • 通讯作者:
    Daley MA
Understanding Mammalian Locomotion: Concepts and Applications
  • DOI:
    10.1002/9781119113713
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bertram
  • 通讯作者:
    J. Bertram
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Daley其他文献

Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
鸟类腰骶椎管内弹性软组织变形和机械感觉功能的潜力
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kamska;Monica Daley;Alexander Badri
  • 通讯作者:
    Alexander Badri
A subpopulation of spinocerebellar tract neurons regulates the stability of bipedal stepping
脊髓小脑束神经元亚群调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;Artur Kania;Monica Daley;Y. Cinnamon;;Tov;A. Klar
  • 通讯作者:
    A. Klar
Spinal dI2 interneurons regulate the stability of bipedal stepping
脊髓 dI2 中间神经元调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;A. Kania;Monica Daley;Y. Cinnamon;Aharon Lev;A. Klar
  • 通讯作者:
    A. Klar

Monica Daley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Daley', 18)}}的其他基金

NSF-BII: Integrative Movement Sciences Institute
NSF-BII:综合运动科学研究所
  • 批准号:
    2319710
  • 财政年份:
    2024
  • 资助金额:
    $ 58.98万
  • 项目类别:
    Cooperative Agreement
Cross-disciplinary innovations in organismal biology through mathematical and physical modeling
通过数学和物理建模实现有机生物学的跨学科创新
  • 批准号:
    2040544
  • 财政年份:
    2021
  • 资助金额:
    $ 58.98万
  • 项目类别:
    Standard Grant
BII Design: Integrative Movement Sciences Institute (IMSI)
天地互连设计:综合运动科学研究所(IMSI)
  • 批准号:
    2021832
  • 财政年份:
    2020
  • 资助金额:
    $ 58.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Deconstructing the contributions of muscle intrinsic mechanics to the control of locomotion using a novel Muscle Avatar approach
合作研究:使用新颖的肌肉化身方法解构肌肉内在力学对运动控制的贡献
  • 批准号:
    2016049
  • 财政年份:
    2020
  • 资助金额:
    $ 58.98万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in Biological Informatics FY 2006
2006财年生物信息学博士后研究奖学金
  • 批准号:
    0630664
  • 财政年份:
    2006
  • 资助金额:
    $ 58.98万
  • 项目类别:
    Fellowship

相似海外基金

Elucidating the mechanism of action of novel ClpP activators in activation of the mitochondrial unfolded protein response.
阐明新型 ClpP 激活剂在激活线粒体未折叠蛋白反应中的作用机制。
  • 批准号:
    10256779
  • 财政年份:
    2020
  • 资助金额:
    $ 58.98万
  • 项目类别:
Elucidating the mechanism of action of novel ClpP activators in activation of the mitochondrial unfolded protein response.
阐明新型 ClpP 激活剂在激活线粒体未折叠蛋白反应中的作用机制。
  • 批准号:
    10034106
  • 财政年份:
    2020
  • 资助金额:
    $ 58.98万
  • 项目类别:
Elucidating the mechanism of action of novel ClpP activators in activation of the mitochondrial unfolded protein response.
阐明新型 ClpP 激活剂在激活线粒体未折叠蛋白反应中的作用机制。
  • 批准号:
    10416057
  • 财政年份:
    2020
  • 资助金额:
    $ 58.98万
  • 项目类别:
Center for Childhood Obesity Prevention - Metabolism and Bioenergetics Core
儿童肥胖预防中心 - 新陈代谢和生物能量学核心
  • 批准号:
    10270953
  • 财政年份:
    2016
  • 资助金额:
    $ 58.98万
  • 项目类别:
Center for Childhood Obesity Prevention - Metabolism and Bioenergetics Core
儿童肥胖预防中心 - 新陈代谢和生物能量学核心
  • 批准号:
    10474574
  • 财政年份:
    2016
  • 资助金额:
    $ 58.98万
  • 项目类别:
Center for Childhood Obesity Prevention - Metabolism and Bioenergetics Core
儿童肥胖预防中心 - 新陈代谢和生物能量学核心
  • 批准号:
    10689811
  • 财政年份:
    2016
  • 资助金额:
    $ 58.98万
  • 项目类别:
Astroglial Glutamate Transporters, Energetics, and Mitochondria
星形胶质细胞谷氨酸转运蛋白、能量学和线粒体
  • 批准号:
    8678737
  • 财政年份:
    2012
  • 资助金额:
    $ 58.98万
  • 项目类别:
Heart and Skeletal Muscle Metabolism, Energetics and Function in Barth Syndrome
巴特综合征中的心脏和骨骼肌代谢、能量和功能
  • 批准号:
    8675917
  • 财政年份:
    2012
  • 资助金额:
    $ 58.98万
  • 项目类别:
Astroglial Glutamate Transporters, Energetics, and Mitochondria
星形胶质细胞谷氨酸转运蛋白、能量学和线粒体
  • 批准号:
    8520412
  • 财政年份:
    2012
  • 资助金额:
    $ 58.98万
  • 项目类别:
Heart and Skeletal Muscle Metabolism, Energetics and Function in Barth Syndrome
巴特综合征中的心脏和骨骼肌代谢、能量和功能
  • 批准号:
    8465895
  • 财政年份:
    2012
  • 资助金额:
    $ 58.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了