InFER: Likelihood-based Inference for Epidemic Risk

InFER:基于可能性的流行病风险推断

基本信息

  • 批准号:
    BB/H00811X/1
  • 负责人:
  • 金额:
    $ 75.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The work is motivated by the need to assess the risk due to spread of infectious diseases within the UK farming sector. We focus on two distinctly different contexts: the epidemic context, where disease response is required to be extremely rapid, and the endemic situation in which more long term control strategies are required for optimal disease control. In the epidemic context, risk assessment needs to be sufficiently rapid in order to effectively inform control strategies. A particular interest lies in foot and mouth disease and in Avian Influenza within the poultry industry. However the methodology developed will not be restricted to these contexts, and the project will construct software which can be rapidly adapted to other situations by expert users. Within the endemic context, the main problem will be the partiality of data rendering formal statistical methods based upon transition models difficult to carry out without highly optimised and application specific algorithms. We will have a particular focus on bovine TB, Leptospira hardjo and Neospora caninum, though again we anticipate that our approach will be sufficiently generic to permit the transportation of methodology developed to different disease contexts. The project will build realistic mathematical models for the random evolution of epidemics of infectious diseases. In particular, methodology will be developed for inferring progressively about the parameters within the model as the epidemic progresses with a view to assessing the risk of future disease propagation. Our approach will be explicitly population-based. In the applications above, the population consists of farms whose status is modelled explicitly through time (typically as susceptible, infectious with or without detection, removed, or occasionally other states). The effect of control strategies can be easily investigated within this population-level approach. Models will also be spatially explicit, allowing for the spread of the disease through local mechanisms such as direct local contact and wind-borne spread. However the spread of the disease through other contacts (perhaps through commercial links) will also also be modelled through network structures where appropriate. In many cases, information about network structure will be partial and the project will develop statistical methods for dealing with this. Particularly in the early stages of an epidemic, governmental authorities (such as Defra) acquire information from infected farms on their recent movements and contacts (so-called dangerous contacts). An important task in our project will be to develop a statistical methodology for assessing the importance of this information and using it to refine risk assessment and control. We place great emphasis on the dissemination of our work and its results to as general audience as possible. To this end, we shall develop a visualisation package to be used in conjunction with the output from our statistical analysis. This will permit the implications of our findings, in terms of risk prediction, economic impact and the implications of control strategies to be easily observed. Our statistical approach will be fully Bayesian, and will be carried out through powerful Markov chain Monte Carlo (and related) techniques. Computational efficiency and speed will be a crucial part of making the methodology practically useful, and the project will investigate new algorithmic and computational advances in order to ensure that the approach can be used in real-time within populations of medium size (for instance around 100 000 in the case of foot and mouth disease).
这项工作的动机是需要评估由于传染病在英国农业部门传播而造成的风险。我们关注两种截然不同的情况:流行病情况,疾病反应要求极其迅速,以及流行情况,在这种情况下,最佳疾病控制需要更长期的控制战略。在流行病方面,风险评估需要足够迅速,以便有效地为控制战略提供信息。家禽养殖业对口蹄疫和禽流感特别感兴趣。然而,开发的方法将不限于这些情况,该项目将构建可由专家用户迅速适应其他情况的软件。在流行的背景下,主要问题将是基于过渡模型的数据呈现正式统计方法的偏好性,如果没有高度优化的和特定于应用的算法,很难实施。我们将特别关注牛结核病、哈德霍型钩端螺旋体和犬新孢子虫,但我们再次预计,我们的方法将足够通用,以允许针对不同疾病背景开发的方法学的传播。该项目将为传染病流行的随机演变建立现实的数学模型。特别是,将制定方法,随着疫情的进展逐步推断模型中的参数,以评估未来疾病传播的风险。我们的方法将明确以人口为基础。在上面的应用中,种群由农场组成,其状态随时间显式建模(通常为易受感染、有或没有检测到的传染性、已移除或偶尔处于其他状态)。在这种总体水平的方法中,可以很容易地研究控制策略的效果。模型在空间上也将是明确的,允许通过当地直接接触和风媒传播等当地机制传播疾病。然而,通过其他接触传播疾病(可能通过商业联系)也将酌情通过网络结构进行模拟。在许多情况下,有关网络结构的信息将是不全面的,该项目将开发处理这一问题的统计方法。特别是在流行病的早期阶段,政府当局(如Defra)从受感染的农场获得关于他们最近的活动和接触(所谓的危险接触)的信息。我们项目中的一项重要任务将是开发一种统计方法,以评估这些信息的重要性,并利用这些信息来改进风险评估和控制。我们非常重视向尽可能广泛的受众传播我们的工作及其成果。为此,我们将开发一个可视化程序包,与我们的统计分析结果一起使用。这将使我们能够很容易地观察到我们的发现在风险预测、经济影响和控制战略方面的影响。我们的统计方法将完全是贝叶斯的,并将通过强大的马尔可夫链蒙特卡罗(及相关)技术来实现。计算效率和速度将是使方法实用的关键部分,该项目将研究新的算法和计算进展,以确保该方法可以在中等规模的人口中实时使用(例如,在口蹄疫情况下约有10万人)。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing Bayesian risk prediction for epidemics using contact tracing.
使用接触者追踪增强流行病的贝叶斯风险预测。
Bayesian estimation of the sensitivity and specificity of individual fecal culture and Paralisa to detect Mycobacterium avium subspecies paratuberculosis infection in young farmed deer.
贝叶斯估计个体粪便培养和 Paralisa 检测养殖幼鹿鸟分枝杆菌亚种副结核感染的敏感性和特异性。
Networks and the epidemiology of infectious disease.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Roberts其他文献

Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling
苹果口味分析:利用挥发性有机化合物解决品种差异以及消费者欣赏与香气分析之间的相关性
  • DOI:
    10.1155/2020/8497259
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gareth Roberts;N. Spadafora
  • 通讯作者:
    N. Spadafora
An experimental study of social selection and frequency of interaction in linguistic diversity
语言多样性中社会选择和互动频率的实验研究
  • DOI:
    10.1075/is.11.1.06rob
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Social biases modulate the loss of redundant forms in the cultural evolution of language
社会偏见调节语言文化演化中冗余形式的丧失
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gareth Roberts;Maryia Fedzechkina
  • 通讯作者:
    Maryia Fedzechkina
Perspectives on Language as a Source of Social Markers
  • DOI:
    10.1111/lnc3.12052
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Gender-based segregation in education, jobs and earnings in South Africa
  • DOI:
    10.1016/j.wdp.2021.100348
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gareth Roberts;Volker Schöer
  • 通讯作者:
    Volker Schöer

Gareth Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Roberts', 18)}}的其他基金

On intelligenCE And Networks - Synergistic research in Bayesian Statistics, Microeconomics and Computer Sciences - OCEAN
论智能与网络 - 贝叶斯统计、微观经济学和计算机科学的协同研究 - OCEAN
  • 批准号:
    EP/Y014650/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X028119/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
Key factors in the emergence of combinatorial structure: An experimental and computational approach
组合结构出现的关键因素:实验和计算方法
  • 批准号:
    1946882
  • 财政年份:
    2020
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Standard Grant
CoSInES (COmputational Statistical INference for Engineering and Security)
CoSInES(工程和安全计算统计推断)
  • 批准号:
    EP/R034710/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
The FIREsIdE International Collaboration: FIre Radiative powEr validation, Intercomparison & fire emissions Estimation
FIREsIdE 国际合作:火灾辐射功率验证、比对
  • 批准号:
    NE/M017958/1
  • 财政年份:
    2015
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
Intractable Likelihood: New Challenges from Modern Applications (ILike)
棘手的可能性:现代应用的新挑战(Ilike)
  • 批准号:
    EP/K014463/1
  • 财政年份:
    2013
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
RUI: Investigating Central Configurations in the N-Body and N-Vortex Problems
RUI:研究 N 体和 N 涡问题中的中心配置
  • 批准号:
    1211675
  • 财政年份:
    2012
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Standard Grant
A longitudinal model for the spread of bovine tuberculosis
牛结核病传播的纵向模型
  • 批准号:
    BB/I013482/1
  • 财政年份:
    2011
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
  • 批准号:
    EP/G026521/1
  • 财政年份:
    2009
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Grant
RUI: Questions on Finiteness and Stability in Celestial Mechanics
RUI:天体力学的有限性和稳定性问题
  • 批准号:
    0708741
  • 财政年份:
    2007
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Standard Grant

相似海外基金

Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 75.05万
  • 项目类别:
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
  • 批准号:
    RGPIN-2019-04047
  • 财政年份:
    2022
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Discovery Grants Program - Individual
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
  • 批准号:
    RGPIN-2019-04047
  • 财政年份:
    2021
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Discovery Grants Program - Individual
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
  • 批准号:
    RGPIN-2019-04047
  • 财政年份:
    2020
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient maximum likelihood phylogeny estimation of Mycobacterium tuberculosis based on tandem repeat data
基于串联重复数据的结核分枝杆菌的有效最大似然系统发育估计
  • 批准号:
    553295-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Agent-based model calibration using likelihood-free inference
使用无似然推理的基于代理的模型校准
  • 批准号:
    2438224
  • 财政年份:
    2020
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Studentship
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
  • 批准号:
    RGPIN-2019-04047
  • 财政年份:
    2019
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Discovery Grants Program - Individual
Measuring the Likelihood of Impersonation for a Smartphone-Based Digital Identity Solution
测量基于智能手机的数字身份解决方案的冒充可能性
  • 批准号:
    528697-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Likelihood-based Component-wise Boosting Methods for Effects Selection in Cox Frailty Models
用于 Cox 衰弱模型中效应选择的基于似然的逐分量增强方法
  • 批准号:
    401012591
  • 财政年份:
    2018
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Research Fellowships
Likelihood-based tests for the Number of Components in Finite Mixture Models
有限混合模型中分量数量的基于似然的检验
  • 批准号:
    RGPIN-2014-06221
  • 财政年份:
    2018
  • 资助金额:
    $ 75.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了