CoSInES (COmputational Statistical INference for Engineering and Security)
CoSInES(工程和安全计算统计推断)
基本信息
- 批准号:EP/R034710/1
- 负责人:
- 金额:$ 375.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are tremendous demands for advanced statistical methodology to make scientific sense of the deluge of data emerging from the data revolution of the 21st Century. Huge challenges in modelling, computation, and statistical algorithms have been created by diverse and important questions in virtually every area of human activity. CoSInES will create a step change in the use of principled statistical methodology, motivated by and feeding into these challenges.Much of our research will develop and study generic methods with applicability in a wide-range of applications. We will study high-dimensional statistical algorithms whose performance scales well to high-dimensions and to big data sets. We will develop statistical theory to understand new complex models stimulated from applications. We will produce methodology tailored to specific computational hardware. We will study the statistical and algorithmic effects of mis-match between data and models. We shall also build methodology for statistical inference where privacy constraints mean that the data cannot be directly accessed.CoSInES willl also focus on two major application domains which will form stimulating and challenging motivation for our research: Data-centric engineering, and Defence and Security. To maximise the impact and speed of translation of our research in these areas, we will closely partner the Alan Turing Institute which is running large programmes in these areas funded respectively by the Lloyd's Register Foundation and GCHQ.Data is providing a disruptive transformation that is revolutionising the engineering professions with previously unimagined ways of designing, manufacturing, operating and maintaining engineering assets all the way through to their decommissioning. The Data centric engineering programme (DCE) at the Alan Turing Institute is leading in the design and operation of the worlds very first pedestrian bridge to be opened and operated in a major international city that will be completely 3-D printed. Fibre-optic sensors embedded in the structure will provide continuous streams of data measuring the main structural properties of the bridge. Unique opportunities to monitor and control the bridge via "digital twins" are being developed by DCE and this is presenting enormous challenges to existing applied mathematical and statistical modelling of these complex structures where even the bulk material properties are unknown and certainly stochastic in their values. A new generation of numerical inferential methods are being demanded to support this progress.Within the Defence and Security domain, there are many statistical challenges emerging from the need to process and communicate big and complex data sets, for example within the area of cyber-security. The virtual world has emerged as a dominant global marketplace within which the majority of organisations operate. This has motivated nefarious actors - from "bedroom hackers" to state-sponsored terrorists - to operate in this environment to further their economic or political ambitions. To counter this threat, it is necessary to produce a complete statistical representation of the environment, in the presence of missing data, significant temporal change, and an adversary willing to manipulate socio and virtual systems in order to achieve their goals.As a second example, to counter the threat of global terrorism, it is necessary for law-enforcement agencies within the UK to share data, whilst rigorously applying data protection laws to maintain individuals' privacy. It is therefore necessary to have mathematical guarantees over such data sharing arrangements, and to formulate statistical methodologies for the "penetration testing" of anonymised data.
为了对 21 世纪数据革命中出现的海量数据有科学的认识,对先进的统计方法有着巨大的需求。人类活动的几乎每个领域中的各种重要问题都给建模、计算和统计算法带来了巨大的挑战。 CoSInES 将在这些挑战的推动下,在原则统计方法的使用方面做出重大改变。我们的大部分研究将开发和研究适用于广泛应用的通用方法。我们将研究高维统计算法,其性能可以很好地扩展到高维和大数据集。我们将发展统计理论来理解由应用激发的新的复杂模型。我们将制定适合特定计算硬件的方法。我们将研究数据和模型之间不匹配的统计和算法影响。我们还将建立统计推断方法,其中隐私限制意味着无法直接访问数据。CoSInES 还将关注两个主要应用领域,这两个领域将为我们的研究带来刺激和挑战动力:以数据为中心的工程以及国防和安全。为了最大限度地提高我们在这些领域的研究成果的影响力和转化速度,我们将与艾伦图灵研究所密切合作,该研究所正在这些领域开展大型项目,分别由劳埃德船级社基金会和英国政府通讯总部资助。Data 正在提供颠覆性的变革,通过以前无法想象的设计、制造、运营和维护工程资产直至其退役的方式,正在彻底改变工程专业。艾伦图灵研究所的数据中心工程项目 (DCE) 在世界上第一座人行天桥的设计和运营方面处于领先地位,该天桥将在国际主要城市开放和运营,该天桥将完全由 3D 打印而成。嵌入结构中的光纤传感器将提供连续的数据流,测量桥梁的主要结构特性。 DCE 正在开发通过“数字孪生”来监测和控制桥梁的独特机会,这对这些复杂结构的现有应用数学和统计建模提出了巨大的挑战,因为即使是散装材料的属性也是未知的,并且其值肯定是随机的。需要新一代的数值推理方法来支持这一进展。在国防和安全领域,由于处理和通信大型复杂数据集的需要而出现了许多统计挑战,例如在网络安全领域。虚拟世界已成为大多数组织运营的全球主导市场。这促使邪恶的行为者——从“卧室黑客”到国家支持的恐怖分子——在这种环境下运作,以进一步实现他们的经济或政治野心。为了应对这种威胁,有必要在存在数据丢失、重大时间变化以及对手愿意操纵社会和虚拟系统以实现其目标的情况下,生成环境的完整统计数据。作为第二个例子,为了应对全球恐怖主义的威胁,英国境内的执法机构有必要共享数据,同时严格应用数据保护法来维护个人隐私。因此,有必要对这种数据共享安排进行数学保证,并制定匿名数据“渗透测试”的统计方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypocoercivity of piecewise deterministic Markov process-Monte Carlo
- DOI:10.1214/20-aap1653
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:C. Andrieu;Alain Durmus;Nikolas Nusken;Julien Roussel
- 通讯作者:C. Andrieu;Alain Durmus;Nikolas Nusken;Julien Roussel
Statistical Finite Elements via Langevin Dynamics
Langevin Dynamics 的统计有限元
- DOI:10.48550/arxiv.2110.11131
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Akyildiz D
- 通讯作者:Akyildiz D
Peskun-Tierney ordering for Markovian Monte Carlo: Beyond the reversible scenario
马尔可夫蒙特卡罗的 Peskun-Tierney 排序:超越可逆场景
- DOI:10.1214/20-aos2008
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Andrieu C
- 通讯作者:Andrieu C
Optimal Scaling of MCMC Beyond Metropolis
MCMC 超越大都市的最佳规模
- DOI:10.48550/arxiv.2104.02020
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Agrawal Sanket
- 通讯作者:Agrawal Sanket
Explicit convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and profiles
Metropolis Markov 链的显式收敛界限:等周测量、谱间隙和轮廓
- DOI:10.48550/arxiv.2211.08959
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Andrieu Christophe
- 通讯作者:Andrieu Christophe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gareth Roberts其他文献
Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling
苹果口味分析:利用挥发性有机化合物解决品种差异以及消费者欣赏与香气分析之间的相关性
- DOI:
10.1155/2020/8497259 - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Gareth Roberts;N. Spadafora - 通讯作者:
N. Spadafora
Perspectives on Language as a Source of Social Markers
- DOI:
10.1111/lnc3.12052 - 发表时间:
2013-12 - 期刊:
- 影响因子:0
- 作者:
Gareth Roberts - 通讯作者:
Gareth Roberts
Social biases modulate the loss of redundant forms in the cultural evolution of language
社会偏见调节语言文化演化中冗余形式的丧失
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
Gareth Roberts;Maryia Fedzechkina - 通讯作者:
Maryia Fedzechkina
An experimental study of social selection and frequency of interaction in linguistic diversity
语言多样性中社会选择和互动频率的实验研究
- DOI:
10.1075/is.11.1.06rob - 发表时间:
2010 - 期刊:
- 影响因子:1.5
- 作者:
Gareth Roberts - 通讯作者:
Gareth Roberts
Gender-based segregation in education, jobs and earnings in South Africa
- DOI:
10.1016/j.wdp.2021.100348 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Gareth Roberts;Volker Schöer - 通讯作者:
Volker Schöer
Gareth Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gareth Roberts', 18)}}的其他基金
On intelligenCE And Networks - Synergistic research in Bayesian Statistics, Microeconomics and Computer Sciences - OCEAN
论智能与网络 - 贝叶斯统计、微观经济学和计算机科学的协同研究 - OCEAN
- 批准号:
EP/Y014650/1 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028119/1 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
Key factors in the emergence of combinatorial structure: An experimental and computational approach
组合结构出现的关键因素:实验和计算方法
- 批准号:
1946882 - 财政年份:2020
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
The FIREsIdE International Collaboration: FIre Radiative powEr validation, Intercomparison & fire emissions Estimation
FIREsIdE 国际合作:火灾辐射功率验证、比对
- 批准号:
NE/M017958/1 - 财政年份:2015
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
Intractable Likelihood: New Challenges from Modern Applications (ILike)
棘手的可能性:现代应用的新挑战(Ilike)
- 批准号:
EP/K014463/1 - 财政年份:2013
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
RUI: Investigating Central Configurations in the N-Body and N-Vortex Problems
RUI:研究 N 体和 N 涡问题中的中心配置
- 批准号:
1211675 - 财政年份:2012
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
A longitudinal model for the spread of bovine tuberculosis
牛结核病传播的纵向模型
- 批准号:
BB/I013482/1 - 财政年份:2011
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
InFER: Likelihood-based Inference for Epidemic Risk
InFER:基于可能性的流行病风险推断
- 批准号:
BB/H00811X/1 - 财政年份:2010
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
- 批准号:
EP/G026521/1 - 财政年份:2009
- 资助金额:
$ 375.95万 - 项目类别:
Research Grant
RUI: Questions on Finiteness and Stability in Celestial Mechanics
RUI:天体力学的有限性和稳定性问题
- 批准号:
0708741 - 财政年份:2007
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242085 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
- 批准号:
2232547 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 375.95万 - 项目类别:
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
$ 375.95万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
- 批准号:
RGPIN-2019-05688 - 财政年份:2022
- 资助金额:
$ 375.95万 - 项目类别:
Discovery Grants Program - Individual
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
- 批准号:
10411629 - 财政年份:2022
- 资助金额:
$ 375.95万 - 项目类别:
Statistical and Computational Tools for Analyzing High-Dimensional Heterogeneous Data
用于分析高维异构数据的统计和计算工具
- 批准号:
2210907 - 财政年份:2022
- 资助金额:
$ 375.95万 - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 375.95万 - 项目类别:
Continuing Grant