A longitudinal model for the spread of bovine tuberculosis

牛结核病传播的纵向模型

基本信息

  • 批准号:
    BB/I013482/1
  • 负责人:
  • 金额:
    $ 5.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Bovine tuberculosis (bTB) is an important disease of cattle and badgers with substantial socio-economic impact in the UK, currently costing the exchequer over £100 million per year in surveillance and compensation and also resulting in costly movement and trade restrictions for farmers. Despite intensive controls, disease incidence is still increasing. Currently herds are monitored for the disease through slaughterhouse surveillance and through regular skin testing. The frequency of routine testing for an individual herd is based on localised incidence of the disease, which acts as a proxy for risk of infection, but does not account for individual herd-level characteristics or cattle movements. Recent bTB research has focussed on examining potential underlying causes for this, including environmental contamination (e.g. re-infection from local wildlife reservoirs), insensitivity to the surveillance test and the impact of large-scale cattle movements. It is the purpose of this proposal to extend our recent work identifying markers for the persistence of infection in individual herds into a dynamic longitudinal framework in order to quantify the mechanisms of transmission in the GB national herd and to test the utility of our results as an aid to risk-based surveillance. The dynamics of transmission of bTB infection can be represented by a model with transmission driven by chance processes, with an observation process that is governed by an imperfect test procedure (or slaughterhouse identification of visible lesions), leading to partially hidden infection. Herds that contain one or more reactors are classified as breakdowns, which then have movement restrictions and more rigorous testing imposed until the herd tests clear. Testing and cattle movement information is available through several large national datasets. Recent mathematical modelling approaches have been developed using these data and, while these will provide useful information on population-level parameters, they average out some detailed information available at the individual herd level. Also, they were not designed to predict disease recurrence at the individual-herd level. Here we propose to build a dynamic, statistical, individual-herd level model, based on continuous surveillance data, which we will fit to the data using a likelihood-based approach. The main methodological challenge will be to deal with the hidden states (infection) and the movement of animals between the herds. Recent advances in statistical methodology, such as 'data-augmented' and 'reversible-jump' Markov chain Monte Carlo allow the joint distribution of the observed and hidden states to be estimated simultaneously along with key infection related parameters. We will explore an exciting alternative called 'sequential filtering'. The main challenge is that these statistical techniques are computationally intensive, especially given the large scale (approx. 130,000 premises) and long time frame (6+ years) of the datasets. However, advances in computer processing technology, such as architectures for running algorithms in parallel on graphics cards, provide an exciting and cost-effective way to approach this problem. The focus here is on bTB, but these sorts of models and the estimation issues that we will address are relevant to a wide range of infectious disease systems, and the methodology developed in this project would be applicable to a range of disease systems. It is the aim of this project to elicit information about the hidden states of the system from the test observations using robust statistical methodology, in a way that allows us to identify high-risk herds based on the past history of infection, as well as on localised incidence and connectedness to other premises. This information would have a practical use in terms of targeting specific herds with more stringent or more regular testing.
牛结核病(bTB)是一种重要的牛和獾疾病,在英国具有重大的社会经济影响,目前每年花费财政部超过1亿英镑用于监测和赔偿,并导致农民昂贵的流动和贸易限制。尽管加强了控制,但发病率仍在上升。目前,通过屠宰场监测和定期皮肤测试来监测牛群的疾病。单个牛群的常规检测频率基于疾病的局部发病率,其作为感染风险的代表,但不考虑单个牛的水平特征或牛的运动。最近的bTB研究集中在检查潜在的根本原因,包括环境污染(例如来自当地野生动物水库的再感染),对监测测试的不敏感性以及大规模牛群移动的影响。本提案的目的是将我们最近的工作扩展到一个动态的纵向框架中,以确定单个畜群中感染持续性的标志物,从而量化GB国家畜群中的传播机制,并测试我们的结果作为基于风险的监测的辅助工具的实用性。bTB感染的传播动力学可以用一个模型来表示,该模型的传播由机会过程驱动,观察过程由不完善的测试程序(或屠宰场对可见病变的识别)控制,导致部分隐藏的感染。包含一个或多个反应器的牛群被归类为故障,然后对其进行移动限制和更严格的测试,直到牛群测试结束。通过几个大型的国家数据集可以获得检测和牛群移动信息。最近的数学建模方法是利用这些数据开发的,虽然这些数据将提供关于种群参数的有用信息,但它们平均了单个畜群一级的一些详细信息。此外,它们的设计目的不是预测疾病复发在个人牛群水平。在这里,我们建议建立一个动态的,统计的,个人畜群水平的模型,基于连续的监测数据,我们将适合的数据使用基于可能性的方法。主要的方法学挑战将是处理隐藏状态(感染)和畜群之间的动物移动。统计方法学的最新进展,如“数据增强”和“可逆跳跃”马尔可夫链蒙特卡罗允许观察到的和隐藏的状态的联合分布被估计同时沿着与关键感染相关的参数。我们将探索一种令人兴奋的替代方法,称为“顺序过滤”。主要的挑战是,这些统计技术是计算密集型的,特别是考虑到大规模(约100万美元)。130,000个场所)和数据集的长时间框架(6年以上)。然而,计算机处理技术的进步,例如在图形卡上并行运行算法的架构,提供了一种令人兴奋且具有成本效益的方法来解决这个问题。这里的重点是bTB,但我们将解决的这些类型的模型和估计问题与广泛的传染病系统相关,本项目中开发的方法将适用于一系列疾病系统。该项目的目的是使用稳健的统计方法从测试观察中获取有关系统隐藏状态的信息,使我们能够根据过去的感染历史以及局部感染历史来识别高风险牛群。发病率和与其他场所的联系。这一信息将在针对特定畜群进行更严格或更定期的检测方面具有实际用途。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Roberts其他文献

Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling
苹果口味分析:利用挥发性有机化合物解决品种差异以及消费者欣赏与香气分析之间的相关性
  • DOI:
    10.1155/2020/8497259
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gareth Roberts;N. Spadafora
  • 通讯作者:
    N. Spadafora
Perspectives on Language as a Source of Social Markers
  • DOI:
    10.1111/lnc3.12052
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Social biases modulate the loss of redundant forms in the cultural evolution of language
社会偏见调节语言文化演化中冗余形式的丧失
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gareth Roberts;Maryia Fedzechkina
  • 通讯作者:
    Maryia Fedzechkina
An experimental study of social selection and frequency of interaction in linguistic diversity
语言多样性中社会选择和互动频率的实验研究
  • DOI:
    10.1075/is.11.1.06rob
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Gender-based segregation in education, jobs and earnings in South Africa
  • DOI:
    10.1016/j.wdp.2021.100348
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gareth Roberts;Volker Schöer
  • 通讯作者:
    Volker Schöer

Gareth Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Roberts', 18)}}的其他基金

On intelligenCE And Networks - Synergistic research in Bayesian Statistics, Microeconomics and Computer Sciences - OCEAN
论智能与网络 - 贝叶斯统计、微观经济学和计算机科学的协同研究 - OCEAN
  • 批准号:
    EP/Y014650/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X028119/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
Key factors in the emergence of combinatorial structure: An experimental and computational approach
组合结构出现的关键因素:实验和计算方法
  • 批准号:
    1946882
  • 财政年份:
    2020
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Standard Grant
CoSInES (COmputational Statistical INference for Engineering and Security)
CoSInES(工程和安全计算统计推断)
  • 批准号:
    EP/R034710/1
  • 财政年份:
    2018
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
The FIREsIdE International Collaboration: FIre Radiative powEr validation, Intercomparison & fire emissions Estimation
FIREsIdE 国际合作:火灾辐射功率验证、比对
  • 批准号:
    NE/M017958/1
  • 财政年份:
    2015
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
Intractable Likelihood: New Challenges from Modern Applications (ILike)
棘手的可能性:现代应用的新挑战(Ilike)
  • 批准号:
    EP/K014463/1
  • 财政年份:
    2013
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
RUI: Investigating Central Configurations in the N-Body and N-Vortex Problems
RUI:研究 N 体和 N 涡问题中的中心配置
  • 批准号:
    1211675
  • 财政年份:
    2012
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Standard Grant
InFER: Likelihood-based Inference for Epidemic Risk
InFER:基于可能性的流行病风险推断
  • 批准号:
    BB/H00811X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
  • 批准号:
    EP/G026521/1
  • 财政年份:
    2009
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Research Grant
RUI: Questions on Finiteness and Stability in Celestial Mechanics
RUI:天体力学的有限性和稳定性问题
  • 批准号:
    0708741
  • 财政年份:
    2007
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Standard Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
  • 批准号:
    82370684
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
  • 批准号:
    82371912
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
  • 批准号:
    31970753
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
凯莱流形上的几何流
  • 批准号:
    11771301
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the roles of oncogenic extrachromosomal circular DNAs in cancer
研究致癌染色体外环状 DNA 在癌症中的作用
  • 批准号:
    10718423
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
Molecular mechanisms of alpha-synuclein induction and spread of pathobiology
α-突触核蛋白诱导和病理学传播的分子机制
  • 批准号:
    10560064
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
The interactions between myenteric macrophages and enteric neurons shape development and spread of enteric synucleinopathy
肌间巨噬细胞和肠神经元之间的相互作用影响肠突触核蛋白病的发展和扩散
  • 批准号:
    10723844
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
The Role of GABA Transaminase ABAT in Pediatric Brain Tumor Medulloblastoma Development and Spread
GABA 转氨酶 ABAT 在小儿脑肿瘤髓母细胞瘤发展和扩散中的作用
  • 批准号:
    10716956
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
Therapeutic Agents Targeting Cryptococcal Infections
针对隐球菌感染的治疗药物
  • 批准号:
    10697960
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
Mechanisms of Prion Spread and Neuronal Toxicity
朊病毒传播和神经元毒性的机制
  • 批准号:
    10587437
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
HMPV/RSV co-infection: effects on replication and viral spread
HMPV/RSV 混合感染:对复制和病毒传播的影响
  • 批准号:
    10743651
  • 财政年份:
    2023
  • 资助金额:
    $ 5.36万
  • 项目类别:
Development of a Community Multidisciplinary Support Model for Persons with Mental Disabilities under COVID-19 Infection Spread
为 COVID-19 感染传播下的精神障碍者制定社区多学科支持模式
  • 批准号:
    22K02034
  • 财政年份:
    2022
  • 资助金额:
    $ 5.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
  • 批准号:
    10364119
  • 财政年份:
    2022
  • 资助金额:
    $ 5.36万
  • 项目类别:
Overcoming metastatic spread of osteosarcoma with RNA loaded nanoparticles
用负载 RNA 的纳米颗粒克服骨肉瘤的转移性扩散
  • 批准号:
    10522300
  • 财政年份:
    2022
  • 资助金额:
    $ 5.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了