RUI: Investigating Central Configurations in the N-Body and N-Vortex Problems

RUI:研究 N 体和 N 涡问题中的中心配置

基本信息

  • 批准号:
    1211675
  • 负责人:
  • 金额:
    $ 13.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to further develop the study of central configurations, an important and active sub-field of celestial mechanics. A central configuration is a special set of positions where the force on each body due to gravity points in the opposite direction of that body's position vector (with respect to the center of mass). Finding a central configuration involves solving a complicated system of nonlinear algebraic equations. Central configurations are important since they lead to families of homographic and homothetic solutions in both the N-body and N-vortex problems. Specific aims of the project include classifying five-body co-circular central configurations, studying relative equilibria in the four and five-vortex problems, using symmetry to simplify the study of central configurations for special choices of the masses, analyzing the linear stability of the corresponding relative equilibria, and describing certain symmetric families of solutions. These topics will be explored using a combination of analysis and modern and computational algebraic geometry.The N-body problem concerns the motion of celestial bodies (stars, planets, asteroids, even spaceships) interacting under their mutual gravitational attraction. Although inherently a mathematical discipline, applications to astronomy and spacecraft transport are plentiful. For example, the recent astronomical discovery of an asteroid at a ``Trojan point'' in the Earth-Sun system came centuries after the mathematical work of Lagrange on three-body central configurations. The N-vortex problem is a widely used model for understanding vorticity evolution in fluid dynamics. Some of the most important types of solutions in these problems are periodic in nature, returning to their initial configuration after some fixed amount of time. Among this class of solutions are simple, rigidly rotating orbits, known as relative equilibria, where the size and shape of the configuration is unchanged throughout the motion. Locating a relative equilibrium requires first finding a central configuration. Analyzing the structure and stability of relative equilibria leads to a greater understanding of the complexities in the full problem. In celestial mechanics this study is useful for plotting spacecraft trajectories and for discovering inexpensive methods of exploring space. In addition, locating stable solutions provides key information about the orbits astronomers and other researchers expect to see in the universe. An important priority of the project is to mentor, support and collaborate with undergraduate researchers interested in the field.
该项目的目标是进一步发展中心构型的研究,这是天体力学中一个重要而活跃的子领域。中心构型是一组特殊的位置,其中每个物体上的重力指向与该物体的位置向量(相对于质心)相反的方向。寻找中心构型涉及到求解复杂的非线性代数方程系统。中心构型很重要,因为它们导致了N体和N涡旋问题中的一族同形和同形解。该项目的具体目标包括对五体共圆中心构型进行分类,研究四旋涡和五旋涡问题中的相对平衡,利用对称性简化对特定质量选择的中心构型的研究,分析相应相对平衡的线性稳定性,并描述某些对称解族。这些主题将使用分析和现代计算代数几何相结合的方法来探索。N体问题涉及天体(恒星、行星、小行星,甚至宇宙飞船)在相互引力下相互作用的运动。虽然本质上是一门数学学科,但在天文学和航天器运输方面的应用却很多。例如,在拉格朗日关于三体中心构型的数学工作几个世纪之后,最近在地球-太阳系统的“特洛伊点”上发现了一颗小行星。N涡问题是流体力学中广泛使用的涡度演化模型。这些问题中一些最重要的解决方案本质上是周期性的,在一段固定的时间后返回到它们的初始配置。在这类解中有简单的刚性旋转轨道,称为相对平衡,其中构型的大小和形状在整个运动过程中保持不变。要找到一个相对均衡,首先需要找到一个中心构型。通过分析相对平衡的结构和稳定性,可以更好地理解整个问题的复杂性。在天体力学中,这项研究有助于绘制航天器的轨迹,并发现探索太空的廉价方法。此外,定位稳定的解提供了关于天文学家和其他研究人员预期在宇宙中看到的轨道的关键信息。该项目的一个重要优先事项是指导、支持和与对该领域感兴趣的本科生研究人员合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Roberts其他文献

Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling
苹果口味分析:利用挥发性有机化合物解决品种差异以及消费者欣赏与香气分析之间的相关性
  • DOI:
    10.1155/2020/8497259
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gareth Roberts;N. Spadafora
  • 通讯作者:
    N. Spadafora
An experimental study of social selection and frequency of interaction in linguistic diversity
语言多样性中社会选择和互动频率的实验研究
  • DOI:
    10.1075/is.11.1.06rob
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Social biases modulate the loss of redundant forms in the cultural evolution of language
社会偏见调节语言文化演化中冗余形式的丧失
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gareth Roberts;Maryia Fedzechkina
  • 通讯作者:
    Maryia Fedzechkina
Perspectives on Language as a Source of Social Markers
  • DOI:
    10.1111/lnc3.12052
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Gender-based segregation in education, jobs and earnings in South Africa
  • DOI:
    10.1016/j.wdp.2021.100348
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gareth Roberts;Volker Schöer
  • 通讯作者:
    Volker Schöer

Gareth Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Roberts', 18)}}的其他基金

On intelligenCE And Networks - Synergistic research in Bayesian Statistics, Microeconomics and Computer Sciences - OCEAN
论智能与网络 - 贝叶斯统计、微观经济学和计算机科学的协同研究 - OCEAN
  • 批准号:
    EP/Y014650/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X028119/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Key factors in the emergence of combinatorial structure: An experimental and computational approach
组合结构出现的关键因素:实验和计算方法
  • 批准号:
    1946882
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
CoSInES (COmputational Statistical INference for Engineering and Security)
CoSInES(工程和安全计算统计推断)
  • 批准号:
    EP/R034710/1
  • 财政年份:
    2018
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
The FIREsIdE International Collaboration: FIre Radiative powEr validation, Intercomparison & fire emissions Estimation
FIREsIdE 国际合作:火灾辐射功率验证、比对
  • 批准号:
    NE/M017958/1
  • 财政年份:
    2015
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Intractable Likelihood: New Challenges from Modern Applications (ILike)
棘手的可能性:现代应用的新挑战(Ilike)
  • 批准号:
    EP/K014463/1
  • 财政年份:
    2013
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
A longitudinal model for the spread of bovine tuberculosis
牛结核病传播的纵向模型
  • 批准号:
    BB/I013482/1
  • 财政年份:
    2011
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
InFER: Likelihood-based Inference for Epidemic Risk
InFER:基于可能性的流行病风险推断
  • 批准号:
    BB/H00811X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
  • 批准号:
    EP/G026521/1
  • 财政年份:
    2009
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
RUI: Questions on Finiteness and Stability in Celestial Mechanics
RUI:天体力学的有限性和稳定性问题
  • 批准号:
    0708741
  • 财政年份:
    2007
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant

相似海外基金

Stepping Stones: Investigating Groundstone Economy at the Birth of Agriculture on the Central Anatolian Plateau
踏脚石:调查安纳托利亚中部高原农业诞生时的基础经济
  • 批准号:
    2885549
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Studentship
Investigating the compartment-specific functions of G protein-coupled receptor kinase 2 in the central circadian clock of mice
研究小鼠中央生物钟中 G 蛋白偶联受体激酶 2 的区室特异性功能
  • 批准号:
    RGPIN-2016-05563
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the role of vortex vein anastomoses in central serous chorioretinopathy (CSC)
研究涡静脉吻合术在中心性浆液性脉络膜视网膜病变 (CSC) 中的作用
  • 批准号:
    504925416
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
    WBP Fellowship
Investigating the effects of VNS on central autonomic network and interoception
研究 VNS 对中枢自主网络和内感受的影响
  • 批准号:
    10893815
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
The central autonomic network and post-concussion outcome: investigating brain-heart interactions
中央自主网络和脑震荡后的结果:调查脑心相互作用
  • 批准号:
    469435
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Operating Grants
Investigating the compartment-specific functions of G protein-coupled receptor kinase 2 in the central circadian clock of mice
研究小鼠中央生物钟中 G 蛋白偶联受体激酶 2 的区室特异性功能
  • 批准号:
    RGPIN-2016-05563
  • 财政年份:
    2021
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the genetic history of the Central and Southern Plains
考察中南原地的遗传史
  • 批准号:
    2051397
  • 财政年份:
    2021
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Investigating the Acute Effects of Translingual Neurostimulation on Central Nervous System Function Among Individuals with Multiple Sclerosis
研究经舌神经刺激对多发性硬化症患者中枢神经系统功能的急性影响
  • 批准号:
    466574
  • 财政年份:
    2021
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Studentship Programs
EAR-PF Continuous vs. mixed-mode deformation during construction of the southern central Andes: Investigating the spatiotemporal scales of Cordilleran tectonic regimes
安第斯山脉中南部建造过程中的 EAR-PF 连续变形与混合模式变形:研究科迪勒拉构造体系的时空尺度
  • 批准号:
    1952791
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Fellowship Award
Investigating the Effect of the Ageing Astrocyte Secretome on Regeneration in the Central Nervous System
研究衰老星形胶质细胞分泌组对中枢神经系统再生的影响
  • 批准号:
    436212
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了